
CHAPTER 2

Hilbert spaces and operators

1. Hilbert space

We have shown that Lp(X,µ) is a Banach space – a complete
normed space. I shall next discuss the class of Hilbert spaces, a spe-
cial class of Banach spaces, of which L2(X,µ) is a standard example,
in which the norm arises from an inner product, just as it does in
Euclidean space.

An inner product on a vector space V over C (one can do the real
case too, not much changes) is a sesquilinear form

V × V → C

written (u, v), if u, v ∈ V . The ‘sesqui-’ part is just linearity in the first
variable

(1.1) (a1u1 + a2u2 , v) = a1(u1, v) + a2(u2, v),

anti-linearly in the second

(1.2) (u, a1v1 + a2v2) = a1(u, v1) + a2(u, v2)

and the conjugacy condition

(1.3) (u, v) = (v, u) .

Notice that (1.2) follows from (1.1) and (1.3). If we assume in addition
the positivity condition1

(1.4) (u, u) ≥ 0 , (u, u) = 0⇒ u = 0 ,

then

(1.5) ‖u‖ = (u, u)1/2

is a norm on V , as we shall see.
Suppose that u, v ∈ V have ‖u‖ = ‖v‖ = 1. Then (u, v) =

eiθ |(u, v)| for some θ ∈ R. By choice of θ, e−iθ(u, v) = |(u, v)| is

1Notice that (u, u) is real by (1.3).
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real, so expanding out using linearity for s ∈ R,

0 ≤ (e−iθu− sv , e−iθu− sv)

= ‖u‖2 − 2sRe e−iθ(u, v) + s2‖v‖2 = 1− 2s|(u, v)|+ s2.

The minimum of this occurs when s = |(u, v)| and this is negative
unless |(u, v)| ≤ 1. Using linearity, and checking the trivial cases u =
or v = 0 shows that

(1.6) |(u, v)| ≤ ‖u‖ ‖v‖, ∀ u, v ∈ V .

This is called Schwarz’2 inequality.
Using Schwarz’ inequality

‖u+ v‖2 = ‖u‖2 + (u, v) + (v, u) + ‖v‖2

≤ (‖u‖+ ‖v‖)2

=⇒ ‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀ u, v ∈ V

which is the triangle inequality.

Definition 1.1. A Hilbert space is a vector space V with an inner
product satisfying (1.1) - (1.4) which is complete as a normed space
(i.e., is a Banach space).

Thus we have already shown L2(X,µ) to be a Hilbert space for any
positive measure µ. The inner product is

(1.7) (f, g) =

∫
X

fg dµ ,

since then (1.3) gives ‖f‖2.
Another important identity valid in any inner product spaces is the

parallelogram law:

(1.8) ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 .

This can be used to prove the basic ‘existence theorem’ in Hilbert space
theory.

Lemma 1.2. Let C ⊂ H, in a Hilbert space, be closed and convex
(i.e., su + (1 − s)v ∈ C if u, v ∈ C and 0 < s < 1). Then C contains
a unique element of smallest norm.

Proof. We can certainly choose a sequence un ∈ C such that

‖un‖ → δ = inf {‖v‖ ; v ∈ C} .

2No ‘t’ in this Schwarz.
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By the parallelogram law,

‖un − um‖2 = 2‖un‖2 + 2‖um‖2 − ‖un + um‖2

≤ 2(‖un‖2 + ‖um‖2)− 4δ2

where we use the fact that (un+um)/2 ∈ C so must have norm at least
δ. Thus {un} is a Cauchy sequence, hence convergent by the assumed
completeness of H. Thus limun = u ∈ C (since it is assumed closed)
and by the triangle inequality

|‖un‖ − ‖u‖| ≤ ‖un − u‖ → 0

So ‖u‖ = δ. Uniqueness of u follows again from the parallelogram law
which shows that if ‖u′‖ = δ then

‖u− u′‖ ≤ 2δ2 − 4‖(u+ u′)/2‖2 ≤ 0 .

�

The fundamental fact about a Hilbert space is that each element
v ∈ H defines a continuous linear functional by

H 3 u 7−→ (u, v) ∈ C
and conversely every continuous linear functional arises this way. This
is also called the Riesz representation theorem.

Proposition 1.3. If L : H → C is a continuous linear functional
on a Hilbert space then this is a unique element v ∈ H such that

(1.9) Lu = (u, v) ∀ u ∈ H ,

Proof. Consider the linear space

M = {u ∈ H ; Lu = 0}
the null space of L, a continuous linear functional on H. By the as-
sumed continuity, M is closed. We can suppose that L is not identically
zero (since then v = 0 in (1.9)). Thus there exists w /∈M . Consider

w +M = {v ∈ H ; v = w + u , u ∈M} .
This is a closed convex subset of H. Applying Lemma 1.2 it has a
unique smallest element, v ∈ w + M . Since v minimizes the norm on
w +M ,

‖v + su‖2 = ‖v‖2 + 2 Re(su, v) + ‖s‖2‖u‖2

is stationary at s = 0. Thus Re(u, v) = 0 ∀ u ∈ M , and the same
argument with s replaced by is shows that (v, u) = 0 ∀ u ∈M .

Now v ∈ w + M , so Lv = Lw 6= 0. Consider the element w′ =
w/Lw ∈ H. Since Lw′ = 1, for any u ∈ H

L(u− (Lu)w′) = Lu− Lu = 0 .
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It follows that u− (Lu)w′ ∈M so if w′′ = w′/‖w′‖2

(u,w′′) = ((Lu)w′, w′′) = Lu
(w′, w′)

‖w′‖2
= Lu .

The uniqueness of v follows from the positivity of the norm. �

Corollary 1.4. For any positive measure µ, any continuous linear
functional

L : L2(X,µ)→ C
is of the form

Lf =

∫
X

fg dµ , g ∈ L2(X,µ) .

Notice the apparent power of ‘abstract reasoning’ here! Although
we seem to have constructed g out of nowhere, its existence follows
from the completeness of L2(X,µ), but it is very convenient to express
the argument abstractly for a general Hilbert space.

2. Spectral theorem

For a bounded operator T on a Hilbert space we define the spectrum
as the set

(2.1) spec(T ) = {z ∈ C;T − z Id is not invertible}.

Proposition 2.1. For any bounded linear operator on a Hilbert
space spec(T ) ⊂ C is a compact subset of {|z| ≤ ‖T‖}.

Proof. We show that the set C \ spec(T ) (generally called the
resolvent set of T ) is open and contains the complement of a sufficiently
large ball. This is based on the convergence of the Neumann series.
Namely if T is bounded and ‖T‖ < 1 then

(2.2) (Id−T )−1 =
∞∑
j=0

T j

converges to a bounded operator which is a two-sided inverse of Id−T.
Indeed, ‖T j‖ ≤ ‖T‖j so the series is convergent and composing with
Id−T on either side gives a telescoping series reducing to the identity.

Applying this result, we first see that

(2.3) (T − z) = −z(Id−T/z)

is invertible if |z| > ‖T‖. Similarly, if (T − z0)−1 exists for some z0 ∈ C
then

(2.4) (T−z) = (T−z0)−(z−z0) = (T−z0)−1(Id−(z−z0)(T−z0)−1)

exists for |z − z0|‖(T − z0)−1‖ < 1. �
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In general it is rather difficult to precisely locate spec(T ).
However for a bounded self-adjoint operator it is easier. One sign

of this is the the norm of the operator has an alternative, simple, char-
acterization. Namely

(2.5) if A∗ = A then sup
‖φ‖=1

〈Aφ, φ〉| = ‖A‖.

If a is this supermum, then clearly a ≤ ‖A‖. To see the converse, choose
any φ, ψ ∈ H with norm 1 and then replace ψ by eiθψ with θ chosen
so that 〈Aφ, ψ〉 is real. Then use the polarization identity to write

(2.6) 4〈Aφ, ψ〉 = 〈A(φ+ ψ), (φ+ ψ)〉 − 〈A(φ− ψ), (φ− ψ)〉
+ i〈A(φ+ iψ), (φ+ iψ)〉 − i〈A(φ− iψ), (φ− iψ)〉.

Now, by the assumed reality we may drop the last two terms and see
that

(2.7) 4|〈Aφ, ψ〉| ≤ a(‖φ+ ψ‖2 + ‖φ− ψ‖2) = 2a(‖φ‖2 + ‖ψ‖2) = 4a.

Thus indeed ‖A‖ = sup‖φ‖=‖ψ‖=1 |〈Aφ, ψ〉| = a.
We can always subtract a real constant from A so that A′ = A− t

satisfies

(2.8) − inf
‖φ‖=1

〈A′φ, φ〉 = sup
‖φ‖=1

〈A′φ, φ〉 = ‖A′‖.

Then, it follows that A′ ± ‖A′‖ is not invertible. Indeed, there exists a
sequence φn, with ‖φn‖ = 1 such that 〈(A′ − ‖A′‖)φn, φn〉 → 0. Thus
(2.9)
‖(A′−‖A′‖)φn‖2 = −2〈A′φn, φn〉+‖A′φn‖2+‖A′‖2 ≤ −2〈A′φn, φn〉+2‖A′‖2 → 0.

This shows that A′−‖A′‖ cannot be invertible and the same argument
works for A′ + ‖A′‖. For the original operator A if we set

(2.10) m = inf
‖φ‖=1

〈Aφ, φ〉 M = sup
‖φ‖=1

〈Aφ, φ〉

then we conclude that neither A−m Id nor A−M Id is invertible and
‖A‖ = max(−m,M).

Proposition 2.2. If A is a bounded self-adjoint operator then, with
m and M defined by (2.10),

(2.11) {m} ∪ {M} ⊂ spec(A) ⊂ [m,M ].

Proof. We have already shown the first part, that m and M are
in the spectrum so it remains to show that A − z is invertible for all
z ∈ C \ [m,M ].

Using the self-adjointness

(2.12) Im〈(A− z)φ, φ〉 = − Im z‖φ‖2.
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This implies that A − z is invertible if z ∈ C \ R. First it shows that
(A− z)φ = 0 implies φ = 0, so A− z is injective. Secondly, the range
is closed. Indeed, if (A−z)φn → ψ then applying (2.12) directly shows
that ‖φn‖ is bounded and so can be replaced by a weakly convergent
subsequence. Applying (2.12) again to φn−φm shows that the sequence
is actually Cauchy, hence convergens to φ so (A − z)φ = ψ is in the
range. Finally, the orthocomplement to this range is the null space of
A∗− z̄, which is also trivial, so A− z is an isomorphism and (2.12) also
shows that the inverse is bounded, in fact

(2.13) ‖(A− z)−1‖ ≤ 1

| Im z|
.

When z ∈ R we can replace A by A′ satisfying (2.8). Then we have
to show that A′− z is inverible for |z| > ‖A‖, but that is shown in the
proof of Proposition 2.1. �

The basic estimate leading to the spectral theorem is:

Proposition 2.3. If A is a bounded self-adjoint operator and p is
a real polynomial in one variable,

(2.14) p(t) =
N∑
i=0

cit
i, cN 6= 0,

then p(A) =
N∑
i=0

ciA
i satisfies

(2.15) ‖p(A)‖ ≤ sup
t∈[m,M ]

|p(t)|.

Proof. Clearly, p(A) is a bounded self-adjoint operator. If s /∈
p([m,M ]) then p(A)−s is invertible. Indeed, the roots of p(t)−s must
cannot lie in [m.M ], since otherwise s ∈ p([m,M ]). Thus, factorizing
p(s)− t we have
(2.16)

p(t)− s = cN

N∏
i=1

(t− ti(s)), ti(s) /∈ [m,M ] =⇒ (p(A)− s)−1 exists

since p(A) = cN
∑
i

(A − ti(s)) and each of the factors is invertible.

Thus spec(p(A)) ⊂ p([m,M ]), which is an interval (or a point), and
from Proposition 2.3 we conclude that ‖p(A)‖ ≤ sup p([m,M ]) which
is (2.15). �

Now, reinterpreting (2.15) we have a linear map

(2.17) P(R) 3 p 7−→ p(A) ∈ B(H)
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from the real polynomials to the bounded self-adjoint operators which
is continuous with respect to the supremum norm on [m,M ]. Since
polynomials are dense in continuous functions on finite intervals, we
see that (2.17) extends by continuity to a linear map
(2.18)
C([m,M ]) 3 f 7−→ f(A) ∈ B(H), ‖f(A)‖ ≤ ‖f‖[m,M ], fg(A) = f(A)g(A)

where the multiplicativity follows by continuity together with the fact
that it is true for polynomials.

Now, consider any two elements φ, ψ ∈ H. Evaluating f(A) on φ
and pairing with ψ gives a linear map

(2.19) C([m,M ]) 3 f 7−→ 〈f(A)φ, ψ〉 ∈ C.

This is a linear functional on C([m,M ]) to which we can apply the Riesz
representatin theorem and conclude that it is defined by integration
against a unique Radon measure µφ,ψ :

(2.20) 〈f(A)φ, ψ〉 =

∫
[m,M ]

fdµφ,ψ.

The total mass |µφ,ψ| of this measure is the norm of the functional.
Since it is a Borel measure, we can take the integral on −∞, b] for any
b ∈ R ad, with the uniqueness, this shows that we have a continuous
sesquilinear map
(2.21)

Pb(φ, ψ) : H×H 3 (φ, ψ) 7−→
∫

[m,b]

dµφ,ψ ∈ R, |Pb(φ, ψ)| ≤ ‖A‖‖φ‖‖ψ‖.

From the Hilbert space Riesz representation theorem it follows that
this sesquilinear form defines, and is determined by, a bounded linear
operator

(2.22) Pb(φ, ψ) = 〈Pbφ, ψ〉, ‖Pb‖ ≤ ‖A‖.

In fact, from the functional calculus (the multiplicativity in (2.18)) we
see that

(2.23) P ∗b = Pb, P
2
b = Pb, ‖Pb‖ ≤ 1,

so Pb is a projection.
Thus the spectral theorem gives us an increasing (with b) family of

commuting self-adjoint projections such that µφ,ψ((−∞, b]) = 〈Pbφ, ψ〉
determines the Radon measure for which (2.20) holds. One can go
further and think of Pb itself as determining a measure

(2.24) µ((−∞, b]) = Pb
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which takes values in the projections on H and which allows the func-
tions of A to be written as integrals in the form

(2.25) f(A) =

∫
[m,M ]

fdµ

of which (2.20) becomes the ‘weak form’. To do so one needs to develop
the theory of such measures and the corresponding integrals. This is
not so hard but I shall not do it.


