CHAPTER 2

Hilbert spaces and operators

1. Hilbert space

We have shown that LP(X,u) is a Banach space — a complete
normed space. I shall next discuss the class of Hilbert spaces, a spe-
cial class of Banach spaces, of which L?(X, ) is a standard example,
in which the norm arises from an inner product, just as it does in
Euclidean space.

An inner product on a vector space V over C (one can do the real
case too, not much changes) is a sesquilinear form

VxV —=C

written (u,v), if u,v € V. The ‘sesqui-’ part is just linearity in the first
variable

(1.1) (auy + agug , v) = aq(uy,v) + as(ug, v),
anti-linearly in the second

(1.2) (u, a1v1 + agvq) = @y (u, v1) + as(u, vo)
and the conjugacy condition

(1.3) (u,v) = (v,u).

Notice that (1.2) follows from (1.1) and (1.3). If we assume in addition
the positivity condition®

(1.4) (u,u) >0, (u,u) =0=u=0,
then
(1.5) lull = (u,w)"?

is a norm on V', as we shall see.
Suppose that w,v € V have ||u|| = |jv] = 1. Then (u,v) =
e |(u,v)| for some § € R. By choice of 0, e (u,v) = |(u,v)| is

Notice that (u,u) is real by (1.3).
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real, so expanding out using linearity for s € R,
0 < (e7u—sv, ey — sv)
= |lu||* — 2sRe e (u,v) + s*||v]|* = 1 — 2s|(u, v)| + s°.

The minimum of this occurs when s = |(u,v)| and this is negative
unless |(u,v)| < 1. Using linearity, and checking the trivial cases u =
or v = 0 shows that

(1.6) |(w, )] < [ulH[oll, ¥ u,0 € V.

This is called Schwarz’® inequality.
Using Schwarz’ inequality

lu+ll* = Jlul® + (u,0) + (v,u) + [Jo]
2
< ([[ull + flv]l)
= [lu+ ol < flul + vl Vu,veV
which is the triangle inequality.

DEFINITION 1.1. A Hilbert space is a vector space V with an inner
product satisfying (1.1) - (1.4) which is complete as a normed space
(i.e., is a Banach space).

Thus we have already shown L?*(X, i) to be a Hilbert space for any
positive measure p. The inner product is

(L.7) mmzémw,

since then (1.3) gives || |2
Another important identity valid in any inner product spaces is the
parallelogram law:

(1.8) lu+l* + [l = vl = 2fjul® + 2jv]|*.

This can be used to prove the basic ‘existence theorem’ in Hilbert space
theory.

LEMMA 1.2. Let C C H, in a Hilbert space, be closed and convex
(i.e., su+(1—sweC ifuveC and0<s<1). Then C contains
a unique element of smallest norm.

PRrROOF. We can certainly choose a sequence u,, € C' such that

|lun|| — 0 = inf {||v]|; v e C} .

2No “t’ in this Schwarz.
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By the parallelogram law,
lun = wnll* = 2lwnll* + 2] um* = Jun +
< 2([Junl® + fJuml|?) — 462
where we use the fact that (u, +u,,)/2 € C so must have norm at least
d. Thus {u,} is a Cauchy sequence, hence convergent by the assumed

completeness of H. Thus limu,, = u € C (since it is assumed closed)
and by the triangle inequality

lunll = lull] < [lun — ul] =0
So ||ul| = ¢. Uniqueness of u follows again from the parallelogram law
which shows that if ||u/|| = 0 then
i — 'l < 262 — 4| (u+ )2 < 0.
U

The fundamental fact about a Hilbert space is that each element
v € H defines a continuous linear functional by
H>u— (u,v) € C

and conversely every continuous linear functional arises this way. This
is also called the Riesz representation theorem.

ProrosiTioN 1.3. If L : H — C s a continuous linear functional
on a Hilbert space then this is a unique element v € H such that

(1.9) Lu= (u,v)VueH,
PrRoOF. Consider the linear space
M={ue H; Lu=0}

the null space of L, a continuous linear functional on H. By the as-
sumed continuity, M is closed. We can suppose that L is not identically
zero (since then v = 0 in (1.9)). Thus there exists w ¢ M. Consider

w+M={veH;v=w+u,uec M} .

This is a closed convex subset of H. Applying Lemma 1.2 it has a
unique smallest element, v € w + M. Since v minimizes the norm on
w+ M,
lv+ sull* = |lv]l* + 2Re(su, v) + ||s[|*||ul|*

is stationary at s = 0. Thus Re(u,v) = 0V u € M, and the same
argument with s replaced by is shows that (v,u) =0V u € M.

Now v € w+ M, so Lv = Lw # 0. Consider the element w' =
w/Lw € H. Since Lw' =1, for any u € H

L(u— (Lu)w'") = Lu — Lu = 0.
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It follows that u — (Lu)w’ € M so if w” = w'/||w’||?

!/ /
(1,0 = (L) = L) =
w
The uniqueness of v follows from the positivity of the norm. O

COROLLARY 1.4. For any positive measure i, any continuous linear

functional
L:L*X,u)—C
s of the form

Lf= /Xfadu, g€ LX(X,p).

Notice the apparent power of ‘abstract reasoning’ here! Although
we seem to have constructed g out of nowhere, its existence follows
from the completeness of L*(X, i), but it is very convenient to express
the argument abstractly for a general Hilbert space.

2. Spectral theorem

For a bounded operator T" on a Hilbert space we define the spectrum
as the set

(2.1) spec(T) = {z € C;T — z1d is not invertible}.

PROPOSITION 2.1. For any bounded linear operator on a Hilbert
space spec(T) C C is a compact subset of {|z| < ||T||}.

PrROOF. We show that the set C \ spec(T') (generally called the
resolvent set of T') is open and contains the complement of a sufficiently

large ball. This is based on the convergence of the Neumann series.
Namely if 7" is bounded and ||T’|| < 1 then

(2.2) (Id-T)"' = i TI

converges to a bounded operator which is a two-sided inverse of Id —T.

Indeed, ||T7]| < ||T]] so the series is convergent and composing with

Id —T" on either side gives a telescoping series reducing to the identity.
Applying this result, we first see that

(2.3) (T —2)=—2(Id-T/z)

is invertible if |z| > ||T||. Similarly, if (T — z,) ™! exists for some z; € C
then

(24) (T—2)=(T—2)—(2—2) = (T—2) " (Id —(z—20) (T —2) ")
exists for |z — 2zo|||(T — z0) 7Y < 1. O
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In general it is rather difficult to precisely locate spec(T).

However for a bounded self-adjoint operator it is easier. One sign
of this is the the norm of the operator has an alternative, simple, char-
acterization. Namely

(2.5) if A* = A then sup (Ad, ¢)| = || AJ|.
ll¢l=1

If a is this supermum, then clearly a < ||A|. To see the converse, choose
any ¢, 1 € H with norm 1 and then replace v by ey with 6 chosen
so that (A¢, ) is real. Then use the polarization identity to write

(2.6) 4(Ag,v) = (A(¢ + 1), (¢ + ) — (A(¢ = ¥), (¢ — ¥))

+i(A(¢ + i), (¢ + i) — i{A(P — irh), (¢ — 1))
Now, by the assumed reality we may drop the last two terms and see
that

(2.7) 4[{Ag, ¥)| < alllo +¥I* + |6 — II*) = 2a([lo* + [4]]*) = 4a.
Thus indeed [|All = supgj—pj=1 [{Ae; ¥)| = a.

We can always subtract a real constant from A so that A’ = A — ¢
satisfies

(2.8) — inf (A'¢,¢) = sup (A'¢,¢) = ||A'].

llell=1 lloll=1
Then, it follows that A’ + ||A’|| is not invertible. Indeed, there exists a
sequence ¢, with ||¢,|| = 1 such that ((A" — ||A’||)¢n, ¢n) — 0. Thus
(2.9)
A=A Gull* = =2(A"bn, )+ A S+ A* < =2{A'G, ) +2[ 4[] — 0.
This shows that A’ — || A’|| cannot be invertible and the same argument
works for A’ 4 [|A’||. For the original operator A if we set
(2.10) m= inf (Ag,¢) M = sup (A, )

lloll=1 llell=1

then we conclude that neither A —mId nor A — M Id is invertible and
JAl| = max(—m, M).

PROPOSITION 2.2. If A is a bounded self-adjoint operator then, with
m and M defined by (2.10),
(2.11) {m} U {M} C spec(A) C [m, M].

ProoF. We have already shown the first part, that m and M are

in the spectrum so it remains to show that A — z is invertible for all
z € C\ [m, M].
Using the self-adjointness

(2.12) Im((A — 2), ¢) = —Im z[|¢||>.



40 2. HILBERT SPACES AND OPERATORS

This implies that A — z is invertible if z € C\ R. First it shows that
(A —z)¢ =0 implies ¢ = 0, so A — z is injective. Secondly, the range
is closed. Indeed, if (A —2)¢, — 1 then applying (2.12) directly shows
that ||¢,|| is bounded and so can be replaced by a weakly convergent
subsequence. Applying (2.12) again to ¢, — ¢, shows that the sequence
is actually Cauchy, hence convergens to ¢ so (A — z)¢ = 1 is in the
range. Finally, the orthocomplement to this range is the null space of
A* — z, which is also trivial, so A — z is an isomorphism and (2.12) also
shows that the inverse is bounded, in fact

1

| Tm 2|

(2.13) I(A=2)71 <

When z € R we can replace A by A’ satisfying (2.8). Then we have
to show that A’ — z is inverible for |z| > ||A]|, but that is shown in the
proof of Proposition 2.1. 0

The basic estimate leading to the spectral theorem is:

ProproOSITION 2.3. If A is a bounded self-adjoint operator and p is
a real polynomial in one variable,

N
(2.14) p(t) = Zciti, ey # 0,
i=0
N .
then p(A) = > ;A" satisfies
i=0
(2.15) Ip(A)[ < sup [p(t)].
te[m,M]

PRrROOF. Clearly, p(A) is a bounded self-adjoint operator. If s ¢
p([m, M]) then p(A) — s is invertible. Indeed, the roots of p(t) — s must
cannot lie in [m.M], since otherwise s € p([m, M]). Thus, factorizing
p(s) —t we have
(2.16)

p(t) —s=cn H(t —t:(s)), ti(s) & [m, M] = (p(A) — s)~* exists

since p(A) = eny > (A — t;(s)) and each of the factors is invertible.

Thus spec(p(A)) C p([m, M]), which is an interval (or a point), and

from Proposition 2.3 we conclude that ||p(A)| < sup p([m, M]) which

is (2.15). 0
Now, reinterpreting (2.15) we have a linear map

(2.17) PR)>pr— p(A) € B(H)
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from the real polynomials to the bounded self-adjoint operators which
is continuous with respect to the supremum norm on [m, M]. Since
polynomials are dense in continuous functions on finite intervals, we
see that (2.17) extends by continuity to a linear map

(2.18)

C([m, M]) 5 fr— f(A) € B(H), [|F(AI < [[fllma, fo(A) = F(A)g(A)

where the multiplicativity follows by continuity together with the fact
that it is true for polynomials.

Now, consider any two elements ¢,1 € H. Evaluating f(A) on ¢
and pairing with ¢ gives a linear map

(2.19) C(fm, M) 5 f — (f(A)g,0) € C.

This is a linear functional on C([m, M]) to which we can apply the Riesz
representatin theorem and conclude that it is defined by integration
against a unique Radon measure g1y, :

(2.20) s - [

Jdpigyp.
[m, M]

The total mass |je,p| of this measure is the norm of the functional.
Since it is a Borel measure, we can take the integral on —oo, b] for any
b € R ad, with the uniqueness, this shows that we have a continuous
sesquilinear map

(2.21)

By(¢, ) : HXH 3 (¢,9) —> }du¢,¢ €R, [B(o, ) < [[A[ll[gll[[¢]l

[m,b

From the Hilbert space Riesz representation theorem it follows that
this sesquilinear form defines, and is determined by, a bounded linear
operator

(2.22) By(d,9) = (P, ), [ Bl < [IA]l-

In fact, from the functional calculus (the multiplicativity in (2.18)) we
see that

(2.23) Py =D, B =Ph, B <1,

so P, is a projection.

Thus the spectral theorem gives us an increasing (with b) family of
commuting self-adjoint projections such that i ((—00,b]) = (P, ¢)
determines the Radon measure for which (2.20) holds. One can go
further and think of P, itself as determining a measure

(2.24) p((=00,0]) = B,
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which takes values in the projections on H and which allows the func-
tions of A to be written as integrals in the form

(2.25) F(A) = /[ L

of which (2.20) becomes the ‘weak form’. To do so one needs to develop
the theory of such measures and the corresponding integrals. This is
not so hard but I shall not do it.



