CHAPTER 2

Hilbert spaces and operators

1. Hilbert space

We have shown that $L^{p}(X, \mu)$ is a Banach space - a complete normed space. I shall next discuss the class of Hilbert spaces, a special class of Banach spaces, of which $L^{2}(X, \mu)$ is a standard example, in which the norm arises from an inner product, just as it does in Euclidean space.

An inner product on a vector space V over \mathbb{C} (one can do the real case too, not much changes) is a sesquilinear form

$$
V \times V \rightarrow \mathbb{C}
$$

written (u, v), if $u, v \in V$. The 'sesqui-' part is just linearity in the first variable

$$
\begin{equation*}
\left(a_{1} u_{1}+a_{2} u_{2}, v\right)=a_{1}\left(u_{1}, v\right)+a_{2}\left(u_{2}, v\right) \tag{1.1}
\end{equation*}
$$

anti-linearly in the second

$$
\begin{equation*}
\left(u, a_{1} v_{1}+a_{2} v_{2}\right)=\bar{a}_{1}\left(u, v_{1}\right)+\bar{a}_{2}\left(u, v_{2}\right) \tag{1.2}
\end{equation*}
$$

and the conjugacy condition

$$
\begin{equation*}
(u, v)=\overline{(v, u)} . \tag{1.3}
\end{equation*}
$$

Notice that (1.2) follows from (1.1) and (1.3). If we assume in addition the positivity condition ${ }^{1}$

$$
\begin{equation*}
(u, u) \geq 0,(u, u)=0 \Rightarrow u=0 \tag{1.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\|u\|=(u, u)^{1 / 2} \tag{1.5}
\end{equation*}
$$

is a norm on V, as we shall see.
Suppose that $u, v \in V$ have $\|u\|=\|v\|=1$. Then $(u, v)=$ $e^{i \theta}|(u, v)|$ for some $\theta \in \mathbb{R}$. By choice of $\theta, e^{-i \theta}(u, v)=|(u, v)|$ is

[^0]real, so expanding out using linearity for $s \in \mathbb{R}$,
\[

$$
\begin{aligned}
0 \leq\left(e^{-i \theta} u\right. & \left.-s v, e^{-i \theta} u-s v\right) \\
& =\|u\|^{2}-2 s \operatorname{Re} e^{-i \theta}(u, v)+s^{2}\|v\|^{2}=1-2 s|(u, v)|+s^{2}
\end{aligned}
$$
\]

The minimum of this occurs when $s=|(u, v)|$ and this is negative unless $|(u, v)| \leq 1$. Using linearity, and checking the trivial cases $u=$ or $v=0$ shows that

$$
\begin{equation*}
|(u, v)| \leq\|u\|\|v\|, \forall u, v \in V \tag{1.6}
\end{equation*}
$$

This is called Schwarz ${ }^{\prime 2}$ inequality.
Using Schwarz' inequality

$$
\begin{aligned}
\|u+v\|^{2} & =\|u\|^{2}+(u, v)+(v, u)+\|v\|^{2} \\
& \leq(\|u\|+\|v\|)^{2} \\
& \Longrightarrow\|u+v\| \leq\|u\|+\|v\| \forall u, v \in V
\end{aligned}
$$

which is the triangle inequality.
Definition 1.1. A Hilbert space is a vector space V with an inner product satisfying (1.1) - (1.4) which is complete as a normed space (i.e., is a Banach space).

Thus we have already shown $L^{2}(X, \mu)$ to be a Hilbert space for any positive measure μ. The inner product is

$$
\begin{equation*}
(f, g)=\int_{X} f \bar{g} d \mu \tag{1.7}
\end{equation*}
$$

since then (1.3) gives $\|f\|_{2}$.
Another important identity valid in any inner product spaces is the parallelogram law:

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2} \tag{1.8}
\end{equation*}
$$

This can be used to prove the basic 'existence theorem' in Hilbert space theory.

Lemma 1.2. Let $C \subset H$, in a Hilbert space, be closed and convex (i.e., su $+(1-s) v \in C$ if $u, v \in C$ and $0<s<1$). Then C contains a unique element of smallest norm.

Proof. We can certainly choose a sequence $u_{n} \in C$ such that

$$
\left\|u_{n}\right\| \rightarrow \delta=\inf \{\|v\| ; v \in C\}
$$

[^1]By the parallelogram law,

$$
\begin{aligned}
\left\|u_{n}-u_{m}\right\|^{2} & =2\left\|u_{n}\right\|^{2}+2\left\|u_{m}\right\|^{2}-\left\|u_{n}+u_{m}\right\|^{2} \\
& \leq 2\left(\left\|u_{n}\right\|^{2}+\left\|u_{m}\right\|^{2}\right)-4 \delta^{2}
\end{aligned}
$$

where we use the fact that $\left(u_{n}+u_{m}\right) / 2 \in C$ so must have norm at least δ. Thus $\left\{u_{n}\right\}$ is a Cauchy sequence, hence convergent by the assumed completeness of H. Thus $\lim u_{n}=u \in C$ (since it is assumed closed) and by the triangle inequality

$$
\left|\left\|u_{n}\right\|-\|u\|\right| \leq\left\|u_{n}-u\right\| \rightarrow 0
$$

So $\|u\|=\delta$. Uniqueness of u follows again from the parallelogram law which shows that if $\left\|u^{\prime}\right\|=\delta$ then

$$
\left\|u-u^{\prime}\right\| \leq 2 \delta^{2}-4\left\|\left(u+u^{\prime}\right) / 2\right\|^{2} \leq 0
$$

The fundamental fact about a Hilbert space is that each element $v \in H$ defines a continuous linear functional by

$$
H \ni u \longmapsto(u, v) \in \mathbb{C}
$$

and conversely every continuous linear functional arises this way. This is also called the Riesz representation theorem.

Proposition 1.3. If $L: H \rightarrow \mathbb{C}$ is a continuous linear functional on a Hilbert space then this is a unique element $v \in H$ such that

$$
\begin{equation*}
L u=(u, v) \forall u \in H \tag{1.9}
\end{equation*}
$$

Proof. Consider the linear space

$$
M=\{u \in H ; L u=0\}
$$

the null space of L, a continuous linear functional on H. By the assumed continuity, M is closed. We can suppose that L is not identically zero (since then $v=0$ in (1.9)). Thus there exists $w \notin M$. Consider

$$
w+M=\{v \in H ; v=w+u, u \in M\} .
$$

This is a closed convex subset of H. Applying Lemma 1.2 it has a unique smallest element, $v \in w+M$. Since v minimizes the norm on $w+M$,

$$
\|v+s u\|^{2}=\|v\|^{2}+2 \operatorname{Re}(s u, v)+\|s\|^{2}\|u\|^{2}
$$

is stationary at $s=0$. Thus $\operatorname{Re}(u, v)=0 \forall u \in M$, and the same argument with s replaced by is shows that $(v, u)=0 \forall u \in M$.

Now $v \in w+M$, so $L v=L w \neq 0$. Consider the element $w^{\prime}=$ $w / L w \in H$. Since $L w^{\prime}=1$, for any $u \in H$

$$
L\left(u-(L u) w^{\prime}\right)=L u-L u=0
$$

It follows that $u-(L u) w^{\prime} \in M$ so if $w^{\prime \prime}=w^{\prime} /\left\|w^{\prime}\right\|^{2}$

$$
\left(u, w^{\prime \prime}\right)=\left((L u) w^{\prime}, w^{\prime \prime}\right)=L u \frac{\left(w^{\prime}, w^{\prime}\right)}{\left\|w^{\prime}\right\|^{2}}=L u
$$

The uniqueness of v follows from the positivity of the norm.
Corollary 1.4. For any positive measure μ, any continuous linear functional

$$
L: L^{2}(X, \mu) \rightarrow \mathbb{C}
$$

is of the form

$$
L f=\int_{X} f \bar{g} d \mu, g \in L^{2}(X, \mu)
$$

Notice the apparent power of 'abstract reasoning' here! Although we seem to have constructed g out of nowhere, its existence follows from the completeness of $L^{2}(X, \mu)$, but it is very convenient to express the argument abstractly for a general Hilbert space.

2. Spectral theorem

For a bounded operator T on a Hilbert space we define the spectrum as the set

$$
\begin{equation*}
\operatorname{spec}(T)=\{z \in \mathbb{C} ; T-z \operatorname{Id} \text { is not invertible }\} \tag{2.1}
\end{equation*}
$$

Proposition 2.1. For any bounded linear operator on a Hilbert space $\operatorname{spec}(T) \subset \mathbb{C}$ is a compact subset of $\{|z| \leq\|T\|\}$.

Proof. We show that the set $\mathbb{C} \backslash \operatorname{spec}(T)$ (generally called the resolvent set of T) is open and contains the complement of a sufficiently large ball. This is based on the convergence of the Neumann series. Namely if T is bounded and $\|T\|<1$ then

$$
\begin{equation*}
(\mathrm{Id}-T)^{-1}=\sum_{j=0}^{\infty} T^{j} \tag{2.2}
\end{equation*}
$$

converges to a bounded operator which is a two-sided inverse of Id $-T$. Indeed, $\left\|T^{j}\right\| \leq\|T\|^{j}$ so the series is convergent and composing with Id $-T$ on either side gives a telescoping series reducing to the identity.

Applying this result, we first see that

$$
\begin{equation*}
(T-z)=-z(\operatorname{Id}-T / z) \tag{2.3}
\end{equation*}
$$

is invertible if $|z|>\|T\|$. Similarly, if $\left(T-z_{0}\right)^{-1}$ exists for some $z_{0} \in \mathbb{C}$ then
(2.4) $(T-z)=\left(T-z_{0}\right)-\left(z-z_{0}\right)=\left(T-z_{0}\right)^{-1}\left(\operatorname{Id}-\left(z-z_{0}\right)\left(T-z_{0}\right)^{-1}\right)$
exists for $\left|z-z_{0}\right|\left\|\left(T-z_{0}\right)^{-1}\right\|<1$.

In general it is rather difficult to precisely locate $\operatorname{spec}(T)$.
However for a bounded self-adjoint operator it is easier. One sign of this is the the norm of the operator has an alternative, simple, characterization. Namely

$$
\begin{equation*}
\text { if } A^{*}=A \text { then } \sup _{\|\phi\|=1}\langle A \phi, \phi\rangle \mid=\|A\| \tag{2.5}
\end{equation*}
$$

If a is this supermum, then clearly $a \leq\|A\|$. To see the converse, choose any $\phi, \psi \in H$ with norm 1 and then replace ψ by $e^{i \theta} \psi$ with θ chosen so that $\langle A \phi, \psi\rangle$ is real. Then use the polarization identity to write

$$
\begin{align*}
4\langle A \phi, \psi\rangle= & \langle A(\phi+\psi),(\phi+\psi)\rangle-\langle A(\phi-\psi),(\phi-\psi)\rangle \tag{2.6}\\
& +i\langle A(\phi+i \psi),(\phi+i \psi)\rangle-i\langle A(\phi-i \psi),(\phi-i \psi)\rangle
\end{align*}
$$

Now, by the assumed reality we may drop the last two terms and see that

$$
\begin{equation*}
4|\langle A \phi, \psi\rangle| \leq a\left(\|\phi+\psi\|^{2}+\|\phi-\psi\|^{2}\right)=2 a\left(\|\phi\|^{2}+\|\psi\|^{2}\right)=4 a \tag{2.7}
\end{equation*}
$$

Thus indeed $\|A\|=\sup _{\|\phi\|=\|\psi\|=1}|\langle A \phi, \psi\rangle|=a$.
We can always subtract a real constant from A so that $A^{\prime}=A-t$ satisfies

$$
\begin{equation*}
-\inf _{\|\phi\|=1}\left\langle A^{\prime} \phi, \phi\right\rangle=\sup _{\|\phi\|=1}\left\langle A^{\prime} \phi, \phi\right\rangle=\left\|A^{\prime}\right\| \tag{2.8}
\end{equation*}
$$

Then, it follows that $A^{\prime} \pm\left\|A^{\prime}\right\|$ is not invertible. Indeed, there exists a sequence ϕ_{n}, with $\left\|\phi_{n}\right\|=1$ such that $\left\langle\left(A^{\prime}-\left\|A^{\prime}\right\|\right) \phi_{n}, \phi_{n}\right\rangle \rightarrow 0$. Thus
$\left\|\left(A^{\prime}-\left\|A^{\prime}\right\|\right) \phi_{n}\right\|^{2}=-2\left\langle A^{\prime} \phi_{n}, \phi_{n}\right\rangle+\left\|A^{\prime} \phi_{n}\right\|^{2}+\left\|A^{\prime}\right\|^{2} \leq-2\left\langle A^{\prime} \phi_{n}, \phi_{n}\right\rangle+2\left\|A^{\prime}\right\|^{2} \rightarrow 0$.
This shows that $A^{\prime}-\left\|A^{\prime}\right\|$ cannot be invertible and the same argument works for $A^{\prime}+\left\|A^{\prime}\right\|$. For the original operator A if we set

$$
\begin{equation*}
m=\inf _{\|\phi\|=1}\langle A \phi, \phi\rangle M=\sup _{\|\phi\|=1}\langle A \phi, \phi\rangle \tag{2.10}
\end{equation*}
$$

then we conclude that neither $A-m$ Id nor $A-M$ Id is invertible and $\|A\|=\max (-m, M)$.

Proposition 2.2. If A is a bounded self-adjoint operator then, with m and M defined by (2.10),

$$
\begin{equation*}
\{m\} \cup\{M\} \subset \operatorname{spec}(A) \subset[m, M] \tag{2.11}
\end{equation*}
$$

Proof. We have already shown the first part, that m and M are in the spectrum so it remains to show that $A-z$ is invertible for all $z \in \mathbb{C} \backslash[m, M]$.

Using the self-adjointness

$$
\begin{equation*}
\operatorname{Im}\langle(A-z) \phi, \phi\rangle=-\operatorname{Im} z\|\phi\|^{2} \tag{2.12}
\end{equation*}
$$

This implies that $A-z$ is invertible if $z \in \mathbb{C} \backslash \mathbb{R}$. First it shows that $(A-z) \phi=0$ implies $\phi=0$, so $A-z$ is injective. Secondly, the range is closed. Indeed, if $(A-z) \phi_{n} \rightarrow \psi$ then applying (2.12) directly shows that $\left\|\phi_{n}\right\|$ is bounded and so can be replaced by a weakly convergent subsequence. Applying (2.12) again to $\phi_{n}-\phi_{m}$ shows that the sequence is actually Cauchy, hence convergens to ϕ so $(A-z) \phi=\psi$ is in the range. Finally, the orthocomplement to this range is the null space of $A^{*}-\bar{z}$, which is also trivial, so $A-z$ is an isomorphism and (2.12) also shows that the inverse is bounded, in fact

$$
\begin{equation*}
\left\|(A-z)^{-1}\right\| \leq \frac{1}{|\operatorname{Im} z|} \tag{2.13}
\end{equation*}
$$

When $z \in \mathbb{R}$ we can replace A by A^{\prime} satisfying (2.8). Then we have to show that $A^{\prime}-z$ is inverible for $|z|>\|A\|$, but that is shown in the proof of Proposition 2.1.

The basic estimate leading to the spectral theorem is:
Proposition 2.3. If A is a bounded self-adjoint operator and p is a real polynomial in one variable,

$$
\begin{equation*}
p(t)=\sum_{i=0}^{N} c_{i} t^{i}, c_{N} \neq 0 \tag{2.14}
\end{equation*}
$$

then $p(A)=\sum_{i=0}^{N} c_{i} A^{i}$ satisfies

$$
\begin{equation*}
\|p(A)\| \leq \sup _{t \in[m, M]}|p(t)| . \tag{2.15}
\end{equation*}
$$

Proof. Clearly, $p(A)$ is a bounded self-adjoint operator. If $s \notin$ $p([m, M])$ then $p(A)-s$ is invertible. Indeed, the roots of $p(t)-s$ must cannot lie in $[m . M]$, since otherwise $s \in p([m, M])$. Thus, factorizing $p(s)-t$ we have

$$
\begin{equation*}
p(t)-s=c_{N} \prod_{i=1}^{N}\left(t-t_{i}(s)\right), t_{i}(s) \notin[m, M] \Longrightarrow(p(A)-s)^{-1} \text { exists } \tag{2.16}
\end{equation*}
$$

since $p(A)=c_{N} \sum_{i}\left(A-t_{i}(s)\right)$ and each of the factors is invertible.
Thus $\operatorname{spec}(p(A)) \subset p([m, M])$, which is an interval (or a point), and from Proposition 2.3 we conclude that $\|p(A)\| \leq \sup p([m, M])$ which is (2.15).

Now, reinterpreting (2.15) we have a linear map

$$
\begin{equation*}
\mathcal{P}(\mathbb{R}) \ni p \longmapsto p(A) \in \mathcal{B}(H) \tag{2.17}
\end{equation*}
$$

from the real polynomials to the bounded self-adjoint operators which is continuous with respect to the supremum norm on $[m, M]$. Since polynomials are dense in continuous functions on finite intervals, we see that (2.17) extends by continuity to a linear map
$\mathcal{C}([m, M]) \ni f \longmapsto f(A) \in \mathcal{B}(H),\|f(A)\| \leq\|f\|_{[m, M]}, f g(A)=f(A) g(A)$
where the multiplicativity follows by continuity together with the fact that it is true for polynomials.

Now, consider any two elements $\phi, \psi \in H$. Evaluating $f(A)$ on ϕ and pairing with ψ gives a linear map

$$
\begin{equation*}
\mathcal{C}([m, M]) \ni f \longmapsto\langle f(A) \phi, \psi\rangle \in \mathbb{C} . \tag{2.19}
\end{equation*}
$$

This is a linear functional on $\mathcal{C}([m, M])$ to which we can apply the Riesz representatin theorem and conclude that it is defined by integration against a unique Radon measure $\mu_{\phi, \psi}$:

$$
\begin{equation*}
\langle f(A) \phi, \psi\rangle=\int_{[m, M]} f d \mu_{\phi, \psi} . \tag{2.20}
\end{equation*}
$$

The total mass $\left|\mu_{\phi, \psi}\right|$ of this measure is the norm of the functional. Since it is a Borel measure, we can take the integral on $-\infty, b]$ for any $b \in \mathbb{R}$ ad, with the uniqueness, this shows that we have a continuous sesquilinear map
$P_{b}(\phi, \psi): H \times H \ni(\phi, \psi) \longmapsto \int_{[m, b]} d \mu_{\phi, \psi} \in \mathbb{R},\left|P_{b}(\phi, \psi)\right| \leq\|A\|\|\phi\|\|\psi\|$.
From the Hilbert space Riesz representation theorem it follows that this sesquilinear form defines, and is determined by, a bounded linear operator

$$
\begin{equation*}
P_{b}(\phi, \psi)=\left\langle P_{b} \phi, \psi\right\rangle,\left\|P_{b}\right\| \leq\|A\| \tag{2.22}
\end{equation*}
$$

In fact, from the functional calculus (the multiplicativity in (2.18)) we see that

$$
\begin{equation*}
P_{b}^{*}=P_{b}, P_{b}^{2}=P_{b},\left\|P_{b}\right\| \leq 1, \tag{2.23}
\end{equation*}
$$

so P_{b} is a projection.
Thus the spectral theorem gives us an increasing (with b) family of commuting self-adjoint projections such that $\mu_{\phi, \psi}((-\infty, b])=\left\langle P_{b} \phi, \psi\right\rangle$ determines the Radon measure for which (2.20) holds. One can go further and think of P_{b} itself as determining a measure

$$
\begin{equation*}
\mu((-\infty, b])=P_{b} \tag{2.24}
\end{equation*}
$$

which takes values in the projections on H and which allows the functions of A to be written as integrals in the form

$$
\begin{equation*}
f(A)=\int_{[m, M]} f d \mu \tag{2.25}
\end{equation*}
$$

of which (2.20) becomes the 'weak form'. To do so one needs to develop the theory of such measures and the corresponding integrals. This is not so hard but I shall not do it.

[^0]: ${ }^{1}$ Notice that (u, u) is real by (1.3).

[^1]: ${ }^{2}$ No ' t ' in this Schwarz.

