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Abstract. This survey discusses algorithms and explicit calculations for curves

of genus at least 2 and their Jacobians, mainly over number fields and finite
fields. Miscellaneous examples and a list of possible future projects are given

at the end.

1. Introduction

An enormous number of people have performed an enormous number of compu-
tations on elliptic curves, as one can see from even a perfunctory glance at [29]. A
few years ago, the same could not be said for curves of higher genus, even though
the theory of such curves had been developed in detail. Now, however, polynomial-
time algorithms and sometimes actual programs are available for solving a wide
variety of problems associated with such curves. The genus 2 case especially is be-
coming accessible: in light of recent work, it seems reasonable to expect that within
a few years, packages will be available for doing genus 2 computations analogous
to the elliptic curve computations that are currently possible in PARI, MAGMA,
SIMATH, apecs, and the “Elliptic Curve Calculator.” As evidence of the growth of
the literature, we note that the first book devoted to the explicit study of genus 2
curves has just appeared [22].

Applications requiring computations with curves of genus at least 2 have existed
for well over a century. The oldest (but which has also acquired new relevance since
the advent of symbolic integration packages) is that of the integration of algebraic
functions: according to a theorem of Risch, the problem of deciding whether the
integral of an algebraic function is elementary can be reduced to the problem of
deciding whether divisors on algebraic curves represent torsion points on the Jaco-
bian. (See [30] for a detailed discussion.) More recently, the ability to deal with
curves of large genus explicitly has had applications in coding theory: to construct
efficient algebraic-geometric codes, one needs curves over finite fields having many
points [46], [113]. Also, algorithmic aspects of Jacobians of genus 2 curves play an
important role in Adleman and Huang’s proof that the primes are recognizable in
random polynomial time [3]. Finally, Jacobians of hyperelliptic curves over finite
fields have been suggested for use in cryptosystems [56]. The security of such sys-
tems is dependent on the alleged difficulty of solving the discrete logarithm problem
in these algebraic groups.
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After a short discussion of the explicit representation of curves, we discuss the
explicit solution to the Riemann-Roch problem (computing a basis for L(D)), and
how it can be used to compute the group law in Jacobians. Next we consider the
problems of counting points on curves and Jacobians over finite fields, and the
related problem of computing the characteristic polynomial of Frobenius. This is
followed by a discussion of practical methods for finding all the rational points
on curves and their Jacobians over number fields. Various other topics related
to curves over number fields are then discussed: constructing curves with many
rational points, constructing curves whose Jacobians have rational torsion points of
large order, computing special fibers of genus 2 curves, and listing all curves with
good reduction outside a specified finite set of primes. We conclude with an eclectic
collection of examples, and a list of possible future projects.

If the relevant work of any people has been neglected in this survey, it is a
reflection of the present author’s ignorance, and it is hoped that such people will
inform the author of their work.

2. Explicit models of curves

If we are to have algorithms for curves, we must first specify how the curves
are to be represented concretely. We will assume that our base field k is perfect,
but not necessarily (and usually not!) algebraically closed. Also we assume our
curves are smooth, projective and geometrically irreducible, although it will often
be convenient (especially for hyperelliptic curves) to use singular models.

In general, curves will be represented as the zero locus of homogeneous poly-
nomials in Pn. By linear projection, we may assume n = 2, at the expense of
introducing singularities. From a computational point of view, it often seems sim-
pler to work with such a singular plane model, given by a single homogeneous
equation f(x, y, z) = 0, than to work with a nonsingular curve embedded in Pn,
n ≥ 3. But when we speak of divisors, etc., on such a curve, we implicitly mean
divisors on its nonsingular model.

Curves of genus 0 can be represented as a plane conic, i.e., in homogeneous
coordinates on P2 as the zero locus of a quadratic form f(x, y, z). Elliptic curves
(curves of genus 1 with a rational point), have “Weierstrass models”

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where the coefficients ai are in k. But already for curves of genus 1 without a
rational point, things can be very complicated: for each N ≥ 1 there exists a
genus 1 curve over Q which is not birational over Q to a plane curve of degree less
than N .

In some ways, things are less terrible for curves of fixed genus g ≥ 2, because in
this case one always has a rational divisor of bounded positive degree, namely the
canonical divisor, and it can be used to construct a projective model of reasonable
degree. For example, if the characteristic of k is not 2, then every curve of genus 2
over k is birational to a curve of the form y2 = f(x) where f(x) ∈ k[x] is a separable
polynomial of degree 5 or 6. If deg f = 6, then one can make a further change of
variables over k in order to get a new model with deg f = 5, but this is possible
over k if and only if the curve has a rational Weierstrass point, i.e., if f(x) has a
zero in k. Models y2 = f(x) with deg f = 5 or 6 have a singularity at infinity, but
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singularities are unavoidable if one wishes to remain in the plane, since the genus
of a nonsingular plane curve of degree d is (d− 1)(d− 2)/2 6= 2.

A curve X is hyperelliptic if it admits a 2-1 map to P1 over k and its genus is
at least 2. The hyperelliptic involution on such a curve is the canonical map that
interchanges the two points of each non-degenerate fiber. Every curve of genus 2 is
hyperelliptic, but most curves of genus g ≥ 3 are not. Again let us assume that the
characteristic of k is not 2. If f(x) ∈ k[x] is separable of degree 2g+1 or 2g+2, then
y2 = f(x) is a model for a hyperelliptic curve g, with one singularity, at infinity.1

If deg f = 2g + 1, the singularity at infinity corresponds to a single point ∞ on
the nonsingular model. If deg f = 2g + 2, it corresponds to a pair of points ∞+

and ∞− on the nonsingular model, and these can be distinguished by the value
of the rational function y/xg+1. Again, a model with deg f = 2g + 2 is birational
over k to one with deg f = 2g + 1, but the rational map will be definable over k if
and only if the original f(x) had a zero in k. In some sense, hyperelliptic curves
over Q of the form y2 = f(x) with deg f = 2g + 1 are rare compared to those with
deg f = 2g + 2, just as polynomials in Q[x] of degree 2g + 2 having a rational zero
are rare among the set of all polynomials in Q[x] of degree 2g + 2.

We have not yet addressed the question of how to find models of the form y2 =
f(x) when they exist. One way of doing this will be sketched at the end of the next
section.

3. The Riemann-Roch problem

Let X be a curve over k of genus g. As usual, if D is a k-rational divisor on X,
L(D) denotes the set of k-rational functions on X such that D + div f ≥ 0, `(D)
denotes the dimension of L(D) over k, and K denotes a canonical divisor on X.
The Riemann-Roch theorem states that

`(D) = deg D + 1− g + `(K −D).

The Riemann-Roch problem is to construct explicitly a basis for L(D), given X
and D. Coates [25] proved that for curves over algebraic number fields, bases over
Q could be effectively constructed. (He needed this for his work with Baker on
effective bounds for integer points on elliptic curves [7].)

Much more recently, Huang and Ierardi [50] proved that the problem could be
solved over the ground field k, and in polynomial time, for plane curves whose
singularities are all defined over k. Finally, Volcheck in his thesis described an
algorithm, based on some 19th-century methods of Brill and Noether, that solved
the problem without assuming the rationality of the singularities. (See [114], [115].)

As alluded to at the end of the last section, a solution to the Riemann-Roch
problem can be useful for finding low-degree models of curves. For instance, if one

1We should warn that not every hyperelliptic curve has a model of the form y2 = f(x) over
k, because the quotient of the curve by its hyperelliptic involution might be a twist of P1; i.e.,

birational over k to a conic in P2 without a k-rational point. From the point of view of determining

rational points on hyperelliptic curves, this is not a problem, because one can effectively determine
whether the k-form of P1 has a k-rational point. If so (and in fact this always happens when g
is even), then the hyperelliptic curve does have a model y2 = f(x) over k; if not, then the
hyperelliptic curve cannot have any k-rational points either.

Another warning: there are rational points on the moduli space of genus 2 curves that do not

come from any curve of genus 2 over Q. In other words, there are genus 2 curves over Q which
are isomorphic to all of their Galois conjugates, but which are not isomorphic to curves defined

by polynomial equations over Q. See the end of [105], and also [82].
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is handed a genus 1 curve and a rational point P , one can find a Weierstrass model
simply by computing L(2P ) and L(3P ). If handed a genus 2 curve, compute any
canonical divisor K, compute L(K) to find an effective canonical divisor D, let x
be a non-constant function in L(D) and let y be a function in L(3D) outside the
span of {1, x, x2, x3}. This yields a model y2 = f(x) with f(x) of degree 5 or 6.

In practice, ad hoc methods for finding nice models can be successful too! See [45]
for an example.

4. Computing in the Jacobian of a curve

There are at least three different ways of doing computations in the Jacobian J
of a curve X of genus g ≥ 2. One way is to use the description of J as the group
of divisors of degree zero on the curve, modulo linear equivalence. Fix a divisor D0

of degree g on X. Then each effective divisor D of degree g gives rise to a point in
J(k), namely the divisor class of D − D0, and the Riemann-Roch theorem shows
that every point P ∈ J(k) arises this way. In other words, we have a surjective
map Xg/Sg → J , and we can represent each P ∈ J by some divisor D of degree g
which maps to it. (Here Xg/Sg denotes the g-th symmetric power of X.)

There are several problems with this approach. The first problem is that the
map Xg/Sg → J is only a birational morphism, so even though most P ∈ J(k) (in
the sense of Zariski topology) will be associated with a unique divisor D, some P
will have infinitely many pre-images. This problem can sometimes be circumvented
by adding additional conditions on D to make it unique. For example [16], if X is
y2 = f(x) where f is a separable polynomial of degree 2g + 1, then every point on
J is represented by a divisor of the form P1 + P2 + · · · + Pr − r · ∞ where Pi are
affine points, r ≤ g, and such that if Pi = (a, b), then no Pj , j 6= i, equals (a,−b).

A second problem is that in order to define the map Xg/Sg → J over k, one
needs a k-rational divisor D0 of degree g, and these do not always exist. A third
problem (related to the first), is that even if D0 can be found, a k-rational point
on J might not be representable by a k-rational divisor. (The divisor class can be
Galois-stable without having a rational divisor in it.) If X has a k-rational point
P , however, then the second problem vanishes (let D0 = g · P ), and so does the
third problem [84, p. 168].

Adding points on the Jacobian, in this representation of the problem, amounts to
finding an effective divisor D′′ of degree g such that D′′ −D0 is linearly equivalent
to (D−D0) + (D′ −D0), for given D and D′. This is an instance of the Riemann-
Roch problem: we must find a nonzero function f in L(D + D′ −D0). For generic
D and D′, this f will be unique up to scalar multiple, and otherwise we must make
a choice (cf. the “first problem” with the approach, above).

Cantor [16] used this approach to give a very explicit algorithm for adding points
on the Jacobian of curves of the form y2 = f(x) where f(x) is a separable poly-
nomial of degree 2g + 1 over a field of characteristic not 2. His algorithm requires
only O(g2 log g) field operations to add two points. In [17], he gives explicit closed
form expressions for the multiplication-by-n map on the Jacobian of such a curve,
and obtains recurrence relations for calculating the analogues of the division poly-
nomials. Bertrand [8] incorporated Cantor’s group law algorithm for hyperelliptic
curves as part of an algorithm for evaluating hyperelliptic integrals, and this has
been implemented as a part of the AXIOM computer algebra system.
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Huang and Ierardi [50] used their solution to the Riemann-Roch problem to give
a polynomial-time algorithm for adding two points in the Jacobian of any plane
curve whose singularities were k-rational. Volcheck [114], [115] used his solution to
the Riemann-Roch problem to give a polynomial-time algorithm which applies to all
plane curves. He improved upon the running time as well: after a precomputation
to deal with the singularities, his algorithm requires O(M7) operations in a field
extension of k of bounded degree, where M is the maximum of the degree and
genus of the curve. More recently, he has implemented an algorithm for computing
multiples of a point in the Jacobian of a nonsingular plane curve over Z/NZ, in the
hope that it can eventually be used to factor integers as in Lenstra’s elliptic curve
method.

A second way of dealing with the Jacobian J is to use the fact that J is itself
an algebraic variety. Adopting this point of view also facilitates computations with
the formal group. For curves of genus 2 over fields of characteristic not 2, explicit
equations defining the Jacobian in projective space (of dimension 8 or 15), explicit
equations for the morphism J×J → J giving the group law in these coordinates, and
the first few terms of the power series giving the formal group law in terms of two
chosen local parameters at the origin on J , have all been given, for y2 = (quintic)
by Grant [48] and for the general case y2 = (sextic) by Flynn [37], [40], where the
quintic or sextic has indeterminate coefficients.2 Flynn’s formulas are available via
anonymous ftp at ftp.liv.ac.uk in the directory ˜ftp/pub/genus2.

The main problem with this approach is the unwieldy size of the algebra. At
present, dealing with Jacobians of curves of genus 3 or more in this way seems
hopeless.

A third possible way to do computations in the Jacobian J of a curve, at least
over fields of characteristic zero, would be to use the analytic description of J as
Cg/Λ where Λ is the period lattice, a discrete Z-module in Cg of rank 2g. For
elliptic curves, the period lattice can be computed using the arithmetic-geometric
mean iteration, which amounts to iteratively replacing the curve by a 2-isogenous
curve. A generalization to genus 2 was developed by Richelot in 1836. See [10] for
a modern treatment. Analytic methods might prove useful in certain situations, for
example determining the degrees of possible isogenies between Jacobians of genus 2
curves, but on the other hand, recovering provably correct algebraic results might
not always be easy.

5. Counting points on curves and their Jacobians over finite fields

Let X be a smooth projective geometrically irreducible curve over Fq of genus g
(presented, as usual, as a possibly singular plane model), and let J be its Jacobian.
Let P (t) denote the characteristic polynomial of the q-power Frobenius endomor-
phism on J , so that P (t) is a monic polynomial of degree 2g with integer coefficients
whose roots ai all have absolute value q1/2. We then have three problems.

2Actually this is not fully carried out in the sextic case: as Flynn states in [40], the biquadratic

forms defining the group law are much too large to be written down in terms of indeterminate coef-
ficients of the sextic, but bilinear forms giving the composition of J×J → J with the projection to

the Kummer surface J/{±1} are given explicitly in terms of indeterminate coefficients, and Flynn
indicates how the biquadratic forms can be obtained from this for any particular specialization of

the coefficients of the sextic to integers.
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(1) Compute #X(Fq).
(2) Compute #J(Fq).
(3) Compute P (t).

As is well known, these problems are closely related. For example,

#X(Fqm) = 1−
2g∑

i=1

am
i + qm

and

#J(Fqm) =
2g∏

i=1

(1− am
i ),

both of which can be calculated in terms of the coefficients of P (t). (See [83, §19]
and [84, §11].) In the other direction, given #X(Fqm) for m = 1, 2, . . . , g, one can
recover #J(Fq) and P (t). For example, if X is a curve of genus 2 over Fq, then

#J(Fq) =
1
2
#X(Fq2) +

1
2
#X(Fq)2 − q.

If q is small, the number of points on a plane curve f(x, y) = 0 over Fq can be
found simply: plug in all values of x and y and count those for which f(x, y) = 0.
If moreover it is hyperelliptic and in the form y2 = f(x), then one need only go
through the values of x and check whether f(x) is a square in each case (and the
list of all squares in Fq can be precomputed). Finally #X(Fq) can be found by
correcting for the singularities and the missing points at infinity. If qg is reasonably
small, one can also solve problems 2 and 3 above by computing #X(Fqm) in this
way for 1 ≤ m ≤ g. We will refer to this as the näıve method.

But better techniques are available, at least in theory, if q is large compared to g.
Schoof [103] gave a polynomial-time algorithm for computing #X(Fq) where X is
an elliptic curve given by a Weierstrass equation in characteristic not equal to 2 or 3.
(As usual, polynomial time means polynomial in the length of the input in bits,
which is O(log q) in this case; the näıve method, in contrast, requires time slightly
worse than linear in q.) Subsequently, Atkin and Elkies introduced improvements
that made the algorithm computationally viable, and Couveignes [28] developed a
practical version for the case of small characterstic. Powerful implementations have
been written by Lercier and Morain [66], [67]: they have computed the number of
points on elliptic curves over fields of prime order p = 10499 + 153 and 2-power
order q = 21301.

Pila [98] gave a theoretical generalization of Schoof’s algorithm to curves of
higher genus. He proved that for a curve X over Fq of any genus, all three prob-
lems above can be solved in time O((log q)∆), where ∆ and the implied constant
depend only on the dimension N of the projective embedding of the Jacobian J , the
number of equations defining J and the addition law, and their degrees. Huang and
Ierardi [51] remarked that for a genus g curve described by an equation f(x, y) = 0
in the plane, Pila’s ∆ is at least doubly exponential in deg f , and they gave a
randomized algorithm in which the exponent ∆ is at worst polynomial in deg f ,
at least for the case in which the curve has only ordinary multiple points. Very
recently Adleman and Huang [4] have given a deterministic algorithm in which ∆ is
polynomial in g and N . (But note that while g is at worst polynomial in deg f , the
dimension N of the projective space N in which the Jacobian is embedded could be
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exponential in g.) For hyperelliptic curves of genus g, they obtain a deterministic
algorithm in which ∆ = O(g6), which is much better. Apparently no one has ever
actually implemented an algorithm, even for genus 2, in which the running time
(for fixed genus) is polynomial in log q.

Katz and Sarnak recently asked whether one could compute the characteristic
polynomial of Frobenius associated to curves X of large genus over very small finite
fields. (They are hoping for numerical illustrations of their theorems on the local
spacing distribution of the zeros of zeta functions of curves over finite fields.) For
concreteness, suppose X is hyperelliptic of genus g = 100 over F3, given by an
equation y2 = f(x) with f(x) ∈ F3[x] of degree 202. It is known [5] that one can
compute the number of F3-points on the Jacobians of such curves in subexponential
time (and even determine the group structure, and solve the discrete logarithm
problem), but computing the entire characteristic polynomial is apparently much
more difficult. In fact, no one seems to be able to improve substantially upon the
näıve method.

One application of the algorithms in this section is to bounding the size of the tor-
sion subgroup of the Mordell-Weil group of Jacobians over number fields. Suppose
J is the Jacobian of a curve X over a number field K, and X has good reduction at
the prime p of K lying above the rational prime p. Let Jp denote the reduction of J
at p, which is also the Jacobian of the reduced curve over the residue field kp. Then
the prime-to-p-part of the torsion subgroup of J(K) maps injectively under reduc-
tion modulo p into Jp(kp). If the absolute ramification index of p is less than p− 1
(in particular if K = Q and p > 2), then the entire torsion subgroup injects. By
calculating the size of Jp(kp) for various p, one can get an upper bound on the size
of the torsion subgroup of J(K). (But see [53] for the limitations of this method.)
In practice, there will usually be plenty of small primes of good reduction, so if the
genus is reasonably small, the näıve method of computing points is sufficient.

Another application of the algorithms in this section is to the computation of
endomorphism rings of Jacobians over number fields. The endomorphism ring maps
injectively into the endomorphism ring of the Jacobian of the reduction of the curve
at a prime of good reduction, and the latter endomorphism ring can be related to
the characteristic polynomial of Frobenius. By comparing the results obtained this
way for various primes, one can bound the rank of the endomorphism ring of the
original Jacobian.3 See [100, Appendix A] or [45] for an example. If the rank of the
endomorphism ring is small, one can deduce that the Jacobian is not a quotient of a
modular Jacobian J1(N), and so in particular the curve does not admit a dominant
morphism from X1(N).4 For example, if X is a genus 2 curve whose Jacobian has
endomorphism ring Z, then X is not modular.

6. The Mordell-Weil group of the Jacobian

If A is an abelian variety over a number field k, then the Mordell-Weil group A(k)
of k-rational points on A is finitely generated. In particular, if J is the Jacobian of
a curve X over Q of genus g ≥ 1, then the Mordell-Weil group J(Q) is isomorphic

3There are other ways of computing the endomorphism ring for abelian varieties which are
quotients of modular Jacobians. Mestre [80], for example, computed the endomorphism rings for

all simple 2-dimensional factors of J0(p) for primes p < 2000.
4Even when the Jacobian of a curve is a quotient of J1(N), it is not necessarily the case that the

curve admits a dominant morphism from X1(N). In general, one obtains only a correspondence.
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as an abstract group to the direct sum of Zr and a finite abelian group, the group
of rational torsion points on J . In the case of elliptic curves, although at present
no algorithm for computing generators of this group is known to succeed, there
are several methods which work in practice for elliptic curves of reasonably small
discriminant, and the effectiveness of some of these can be proved if one assumes
certain standard conjectures, such as that the Shafarevich-Tate group is finite.

Here we will describe the generalization of one of these methods, 2-descent, to the
case of hyperelliptic curves. Cassels outlined an approach for genus 2 curves in [20].
Gordon and Grant [47] carried this out for some curves, but their method worked
only in the very special case where all six Weierstrass points were rational, and the
method was quite involved in that it required explicit equations for homogeneous
spaces of the Jacobian. Cassels’ descent was made explicit and was generalized to
hyperelliptic curves over Q of any genus by Schaefer [102] for the odd degree case,
and recently by Flynn, Schaefer, and the author [45] for the general even degree
case.

For concreteness, assume X is a curve y2 = f(x) where deg f(x) = 5, and J is
its Jacobian. Let L = Q[T ]/(f(T )), which is a product of number fields. What
Cassels did in [20] was to define a injective homomorphism

J(Q)/2J(Q) x−T−→
(
ker : L∗/L∗2 Norm→ Q∗/Q∗2

)
.

Schaefer [102] proved that
(
ker : L∗/L∗2 Norm→ Q∗/Q∗2

)
was isomorphic to the Ga-

lois cohomology group H1(GQ, J [2]), and that under this identification the “(x−T )”
map coincided with the usual coboundary map of Galois cohomology. Moreover he
demonstrated how to compute the 2-Selmer group of J explicitly as a subgroup of
L∗/L∗2, without having to write down homogeneous spaces. When the Shafarevich-
Tate group has trivial 2-torsion, this method thus lets one compute the size of
J(Q)/2J(Q), from which one can readily compute the rank of J(Q).

For y2 = f(x) with deg f(x) = 6, Cassels described an (x − T ) map from
J(Q)/2J(Q) to the kernel of the norm map from L∗/L∗2Q∗ to Q∗/Q∗2. But the
cohomological interpretation is not as neat in this case: this kernel is not isomor-
phic to H1(GQ, J [2]), and the (x−T ) map could even fail to be injective. Schaefer
and the author have recently discovered that the (x−T ) map can be related to the
coboundary map of Galois cohomology for the 2-torsion of a generalized Jacobian.

As will be mentioned in Section 11, Smart [108] has an implementation of Schae-
fer’s algorithm, but only for a very restricted class of genus 2 curves. Stoll also has
implemented a 2-descent for most curves of the form y2 = x5 + D. The deg f = 6
algorithm has been successfully used a few times (see [45] and [99]), but no one has
automated it yet. Stoll also written a program that computes lower bounds on the
rank of J(Q) by attempting to find the exact rank of a subgroup generated by a
given set of points by looking at the rank of the q-part of the image of the subgroup
in finite products

∏
Jp(Fp) for various primes q. In [110] he finds simple genus 2

Jacobians with Mordell-Weil rank at least 19; recently he has found one with rank
at least 20.

When these methods succeed, they let one compute the rank of J(Q). But
there is still a significant amount of work to be done if one wants to list generators
for J(Q). One could in theory do an exhaustive search for rational points of small
height, but the generators might have height very large compared to the coefficients
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of the original curve, so large that they could not be found by a näıve search.5 And
even if one does find enough independent points in J(Q) to generate a subgroup
of the correct rank, one still needs to use height functions in order to prove that
the points are generators modulo torsion. An explicit theory of heights for genus 2
Jacobians has been worked out in [42], but so far it has proved useful in practice
only for curves with very small coefficients. For example [45], the methods are
not strong enough to decide whether the divisor class [∞+ − ∞−] generates the
Mordell-Weil group of the rank 1 Jacobian of

y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1.

Currently it seems that no explicit computations have been done with Selmer
groups and Shafarevich-Tate groups of Jacobians of non-hyperelliptic curves, ex-
cept for special curves whose Jacobians have a large endomorphism ring, such as
Fermat quotients (see [74] and [55], for example) and modular curves (see [72], for
example). For some computations of “analytic ranks” of certain quotients of J0(N),
see Brumer [14]. Assuming the Birch and Swinnerton-Dyer conjecture, these should
be the same as the “algebraic” Mordell-Weil ranks.

7. Provably finding all rational points on a curve

By Faltings’ Theorem [36] (originally the Mordell Conjecture), if a curve over a
number field k has genus at least 2, then it has only finitely many k-rational points.
Unfortunately the proof is ineffective: it does not provide a bound for the heights
of the rational points on any given curve. Nevertheless, it is sometimes possible in
practice to list all the rational points on a curve by using an idea of Chabauty that
predates Faltings’ work by 40 years!

Chabauty [23] proved that if the Mordell-Weil rank of a curve over a number
field k is less than the genus, then the curve has finitely many k-rational points.
In order to sketch his idea, let us restrict to the case of a genus 2 curve X over
Q whose Jacobian J has Mordell-Weil rank 1. Fix a non-constant map X → J
over Q and a prime p of good reduction for J . Inside the 2-dimensional p-adic
Lie group J(Qp), we have two analytic 1–dimensional subvarieties: X(Qp) and
the closure of J(Q). Their intersection is 0-dimensional and in fact finite, and
X(Q) maps into this finite set. (This can also be rephrased in terms of the formal
group or in terms of p-adic integration.) Coleman [26] was the first to realize
that one could give effective bounds for the size of this finite intersection. Using
this idea, he was able to show, for example, that if X is a genus g curve over Q
with good reduction at a prime p > 2g, and if the Mordell-Weil rank of X is less
than g, then #X(Q) ≤ #X(Fp) + 2g − 2. Coleman himself did not give explicit
examples where X(Q) was computed using this bound, presumably because of the
difficulty of bounding the Mordell-Weil rank; the first non-trivial example was given
by Grant [49].

5This actually happens in genus 1: for instance, for the rank 1 elliptic curve 1063y2 = x3 − x

of [33], the x-coordinate of a generator of the Mordell-Weil group modulo torsion is X2/1063

where

X =
11091863741829769675047021635712281767382339667434645

317342657544772180735207977320900012522807936777887
.

Elkies suggests that similar examples might be found in some Jacobians of curves of the form
Dy2 = x5 − x with D ∈ Q∗.
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In some cases, it is actually possible to compute the size of the intersection
exactly, and this leads to an improved upper bound for #X(Q). With luck, one
will actually be able to exhibit this many rational points on X, and then one will
know that all rational points have been found. (See [44], [45] and [99] for examples
in which this refinement of the method has had success.)

McCallum [75] has used this “method of Chabauty and Coleman” to prove the
second case of Fermat’s Last Theorem for regular primes. Although this particular
application is superseded by the work of Wiles [116] and Taylor-Wiles [111], and
preceded by the work of Kummer, who proved Fermat’s Last Theorem in its entirety
for regular primes, McCallum’s work still serves as evidence of the power of the
method.

When the method of Chabauty and Coleman fails to resolve the rational points
(for example, if the Mordell-Weil rank is not less than the genus, or if the bound
obtained for the number of rational points appears not to be sharp), there are a
few other methods that sometime work in practice, for somewhat limited classes of
curves. For example, if X is a genus 2 curve that admits a non-constant morphism to
an elliptic curve over Q, so that the Jacobian of X splits up to isogeny as a product
of two elliptic curves, then if one of those elliptic curves has rank 0, the rational
points of X can be found in the (finite) pre-image of the rational points on that
elliptic curve. This is a trivial instance of a general method of Dem’janenko [32],
further generalized by Manin [71]6: if X is a curve over a number field k, if A is a
k-simple abelian variety such that Am occurs in the decomposition of the Jacobian
of X up to isogeny over k, and if

m >
rank A(k)

rank Endk A
,

then X(k) is finite. This can be made effective. See [106] for some explicit appli-
cations of this method.

One can also attempt to use unramified covers of X: if Y is an unramified cover
of X, then according to a theorem of Chevalley and Weil [24], there is a certain
extension field k′ such that the pre-images of the rational points on X are contained
in Y (k′). Although Y will have higher genus than X if the genus of X is at least 2
(and if the cover is non-trivial), one can hope to compute Y (k′) by finding a map
from Y to a curve of smaller genus (for example, an elliptic curve over k′ of rank 0).
Some examples of this are given in [27].

If one suspects that there may be no rational points on a curve X, one can of
course try to prove this by determining whether X has points over all completions
of Q. But just as in genus 1, the “Hasse principle” can fail: existence of local points
over all completions is not enough to guarantee the existence of a rational point.
See [85] for a few examples of genus 2 curves for which the Hasse principle fails.

Some computations have been done with rational points on quartic curves given
in homogeneous coordinates by an equation

F (x2, y2, z2) = 0

where F (X, Y, Z) is a nonsingular quadratic form. What facilitates the study here
is the fact that these curves admit three maps to genus 1 curves. In particular,
their Jacobians split completely into elliptic curves. See [13], [21], [11], and [12], for

6In fact, what we are stating here is only a special case of Manin’s result, which applies also

to smooth projective varieties of higher dimension whose Néron-Severi group has rank 1.
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example. Bremner has studied similar examples of families of curves up to genus 5
whose Jacobians split completely into elliptic curves.

Finally, if one wants only to find the integer points on a hyperelliptic curve,
one can attempt to use a diophantine approximation method made explicit by
de Weger [31].

8. Curves with many rational points

In light of Faltings’ Theorem, it is natural to ask whether the number of k-
rational points on a genus g curve over a number field k can be bounded solely in
terms of k and g. Caporaso, Harris, and Mazur [18] have shown that this would
follow from some very general conjectures of Lang on rational points on varieties of
general type. Abramovich [2] showed more: that the bound could be made uniform
for curves of fixed genus over all quadratic or cubic extensions k of a fixed number
field. Finally Pacelli [96], still assuming Lang’s conjectures, generalized this to
prove that the number of k-rational points on a curve of genus g could be bounded
by a quantity depending only on [k : Q] and g.

In the other direction, several people have been finding curves having many
rational points; here we give some current records. There is a genus 2 curve over Q
with at least 588 rational points (Keller and Kulesz [54]), a genus 3 curve with at
least 176 rational points ([54] again), infinitely many genus 4 curves with at least
126 rational points (Elkies), and a genus 5 curve with at least 120 rational points
(Kulesz). In general, Mestre has proved that there exists a genus g hyperelliptic
curve having at least 8g + 16 rational points.

Most of these curves were found by a search within a family of curves having a
large automorphism group. On the other hand, Stahlke [109] has found a genus 2
curve with at least 336 rational points having minimal automorphism group, Z/2Z
(nothing but the identity and the hyperelliptic involution).

Not surprisingly, another feature of these curves is that their Jacobians tend to
have large Mordell-Weil rank. Elkies showed that the Keller-Kulesz genus 2 curve
with at least 588 rational points has Jacobian isogenous to the square of an elliptic
curve of rank at least 12.

9. Curves whose Jacobians have rational torsion points of large
order

Mazur [72] proved that if E is an elliptic curve over Q, the group of rational
torsion points on E is isomorphic to Z/NZ with N ≤ 10 or N = 12, or isomorphic
to Z/2Z× Z/2NZ with N ≤ 4. The uniform boundedness of the torsion has been
generalized to number fields by work of Manin [71], Kamienny and Mazur [52],
Abramovich [1], and finally Merel [76].

It is not known whether there is a uniform bound on the size of the torsion
subgroup of an abelian variety of fixed dimension g ≥ 2 over a fixed number field In
fact, there is no bound known even for 2-dimensional abelian varieties, even if one
restricts to Jacobians of genus 2 curves over Q. There is not even a single integer
` for which it is known that there is no genus 2 Jacobian with a rational point of
order `. Working with the full moduli spaces (the higher dimensional analogues of
X1(N)) seems forbidding from a computational point of view.

On the other hand, Flynn ([38], [39]) has exhibited hyperelliptic curves and
families of hyperelliptic curves over Q whose Jacobians have rational torsion points
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of fairly large order. His method for constructing such curves is elementary: he
writes down a specific equation y2 = f(x), carefully choosing f(x) so that the
divisors of certain rational functions are combinations of a few explicitly given
points on the curve. Each such rational function gives rise to a relation in the
Jacobian, and with enough relations, one can hope to deduce that the differences
of the points involved represent torsion points on the Jacobian. For example, the
divisor of the rational function y − xg on the curve

y2 + y = x2g+1 + x2g + xg

is (2g + 1)D where D = (1, 0)−∞, and one can check that D represents a torsion
point on the Jacobian of order 2g + 1. (See [39].)

Leprévost ([59], [60], [61], [62], [63], [64], [65]) and Ogawa [91] have used similar
methods to find many other possibilities for the orders of rational torsion points on
Jacobians. Here are samples of what is now known:

Theorem 1. For ` ≤ 30, ` 6= 28, there exists a genus 2 curve over Q whose
Jacobian has a rational torsion point of exact order `.7 For ` ≤ 23 or ` = 26
or ` = 30, there exists a non-constant genus 2 curve over Q(t) whose Jacobian
has a rational torsion point of exact order `. There exists a non-constant genus 2
curve over Q(t) whose Jacobian has a subgroup of rational points isomorphic to
Z/3Z× Z/9Z.

Theorem 2. If ` ≤ 3g then there is at least one genus g curve over Q whose
Jacobian has a rational torsion point of exact order `. The same is true if g is even
and g2 + 2g + 1 ≤ ` ≤ g2 + 3g + 1. If 1 ≤ ` ≤ 2g + 1 or ` = 2g2 + 2g + 1, 2g2 + 3g +
1, 2g2 +4g +1, 2g(2g +1), then there exists a non-constant genus g curve over Q(t)
whose Jacobian has a rational torsion point of exact order `. The same is true for
2g + 2 ≤ ` ≤ 3g if ` is even.

Note that from each non-constant curve over Q(t) with a rational torsion point
of a certain order, one can obtain infintely many pairwise non-Q-isomorphic curves
over Q whose Jacobian has a torsion point of the same order by specializing t.

10. Computing the special fiber of a genus 2 curve

There is a well-known classification of the fibers of minimal proper regular mod-
els of elliptic curves, and an algorithm of Tate which lets one compute the type
of this fiber given a Weierstrass equation for the elliptic curve, and this has been
implemented in various elliptic curve packages. (See [107, Chapter IV] for an ex-
position of this theory.) For the case of genus 2 curves, a similar classification has
been given by [93] and completed by Namikawa and Ueno [90]. There are well over
100 different types of fibers! Liu [68] gave an algorithm for explicitly computing
the special fiber of the minimal model in terms of the coefficients of a genus 2 curve
for residue characteristic not equal to 2, and he (with help from Henri Cohen) has
implemented this algorithm over Z for computing the special fiber of a genus 2

7The existence for ` = 19 and ` = 21 was in fact demonstrated over 20 years ago by Ogg [94]:

the 2-dimensional modular Jacobians J1(13) and J1(18) have torsion subgroups isomorphic to
Z/19Z and Z/21Z, respectively. The only other J1(N) of dimension 2 is J1(16), whose torsion

subgroup is isomorphic to Z/2Z × Z/10Z. Ironically it is the existence of the rational 19-torsion
points on J1(13) which was used by Mazur and Tate [73] to prove the non-existence of rational
points of order 13 on elliptic curves over Q.
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curve at any prime p 6= 2. The program, which is available via anonymous ftp at
megrez.math.u-bordeaux.fr in the directory /pub/liu, also computes the odd
part of the conductor. It is to be hoped that algorithms will soon be available for
residue characteristic 2 as well. Some work towards this goal is described in [70].

11. Curves of genus 2 with good reduction outside 2

Shafarevich proved that for each number field K and finite set of places S, there
are only finitely many K-isomorphism classes of elliptic curves over K with good
reduction outside S. (See [104].) Ogg [92] determined explicitly all elliptic curves
over Q up to isomorphism with good reduction outside 2, and various other authors
have produced lists for various other K and S. (See for instance, [58].)

Shafarevich also conjectured a generalization to higher genus, namely, that for
each number field K, finite set of places S, and integer g ≥ 2, there are only finitely
many K-isomorphism classes of curves of genus g over K with good reduction
outside S. This was proved by Faltings [36], but the hyperelliptic case had already
been resolved by several authors: [97], [95], [77].

Smart [108] has recently produced the complete list of genus 2 curves over Q with
good reduction outside 2, up to isomorphism over Q. (There are 428 of them!) This
completes the earlier work on this problem in [77], [112], and [78]. The method for
producing this list is to reduce to the problem of enumerating equivalence classes
of binary forms whose discriminant is an S-unit (where S = {2}). Birch and
Merriman [9] proved that there were only finitely many such equivalence classes,
and Evertse and Györy [35] gave an effective proof, which then had to be made
explicit for the case at hand.

Smart also in [108] heuristically divides his list of genus 2 curves according to the
isogeny class of the Jacobian over Q. If two Jacobians are isogenous over Q, then
for each p of good reduction, their traces of Frobenius will coincide. Conversely, by
Faltings [36], if the traces of Frobenius coincide for all such p, then the Jacobians are
isogenous, and in principle one need only check primes p up to an effective bound,
but in practice this bound is usually too large for computation. Smart checks the
Jacobians of his genus 2 curves for p up to 541, which is almost certainly sufficient,
but not completely proven to separate the curves according to isogeny class. The
428 curves fall into 165 putative isogeny classes.

Finally Smart has implemented Schaefer’s algorithm for calculating the Mordell-
Weil rank for genus 2 curves y2 = f(x) over Q in the special case where the degree
of f is 5, the curve has good reduction outside 2, and the irreducible factors of f(x)
define number fields of class number one.8 He uses this to calculate the rank of
some of the curves in his list, and is able to deduce the ranks of many more under
the assumptions that the order of the 2-torsion in the Shafarevich-Tate group is
a square, and that curves in his putative isogeny classes actually have isogenous
Jacobians.

All this data can be obtained on the World Wide Web: the URL is
http://www.ukc.ac.uk/IMS/maths/people/N.P.Smart/curves.html.

8As it turns out, the last of the three conditions is automatically true for genus 2 curves with
good reduction outside 2.
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12. Miscellaneous examples of genus 2 curves

The genus 2 curve

y2 = 278271081x2(x2 − 9)2 − 229833600(x2 − 1)2

(with automorphism group of order 12) has at least 588 rational points [54]. The
genus 2 curve

y2 = 1306881x6 + 18610236x5 − 46135758x4 − 1536521592x3

− 2095359287x2 + 32447351356x + 89852477764

has no automorphisms other than the identity and the hyperelliptic involution, but
still has at least 336 rational points [109].

Leprévost [63] showed that the divisor (0, 2)−∞+ on the genus 2 curve

y2 = (2x− 1)(2x5 − x4 − 4x2 + 8x− 4)

represents a 29-torsion point on the Jacobian.
Elkies showed that the curve

y2 = 4x6 + 12x5 + 29x4 + 38x3 + 29x2 + 12x + 4

is the only genus 2 curve with 12 automorphisms and six rational points whose
differences generate a torsion subgroup isomorphic to (Z/5Z)2 in the Jacobian.
(The rational points are at x = 0,−1,∞.) The Jacobian splits up to isogeny over
Q as the product of the two elliptic curves

y2 + xy + y = x3 + x2 − 3x + 1, y2 + xy + y = x3 + x2 + 22x− 9,

(50B1(A) and 50B2(B) in [29]), and these are the only two elliptic curves over Q
having both a rational 5-torsion point and a rational 3-isogeny (to each other).

Let X be the curve

y2 = x(x− 1)(x− 2)(x− 5)(x− 6)

and let J be its Jacobian. According to [47], the Mordell-Weil group J(Q) is
isomorphic to Z ⊕ (Z/2Z)4. In particular, its rank is less than the genus, and
Coleman’s effective Chabauty bound for p = 7 applies to show that #X(Q) ≤ 10,
and in fact there do exist 10 points:

X(Q) = {∞, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120)}.

This is the first curve for which the method of Chabauty and Coleman was used to
find all the rational points. See [49].

The curve that classifies quadratic polynomials f(x) (up to conjugation by linear
polynomials) together with a point t which upon iteration of f enters a 3-cycle after
two steps is birational to the genus 2 curve

X : y2 = x6 − 2x4 + 2x3 + 5x2 + 2x + 1.

Its Jacobian J is an absolutely simple abelian surface of prime conductor 743, but
it is not modular, since its endomorphism ring over Q is only Z. Its Mordell-Weil
group is isomorphic to Z, and is probably generated by the divisor class [∞+−∞−].
The method of Chabauty and Coleman shows that there are eight points on X:

X(Q) = {(−1,±1), (0,±1), (1,±3),∞+,∞−}.

(See [99].)
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The method of Chabauty and Coleman does not apply to the genus 2 curve

X : y2 = x5 + 4x3 + x

since its Mordell-Weil rank is 2: its Jacobian is isogenous over Q to the product of
two elliptic curves

w2 = v3 + 4v2 + 6v, w2 = v3 − 4v2 + 6v,

both of which have rank 1. Nevertheless, using an unramified cover on X, Coombes
and Grant [27] were able to prove that X(Q) = {∞, (0, 0)}.

Mestre [80],[81] reinterpreted a geometric result of Humbert to write down the
following two-parameter family of hyperelliptic curves whose Jacobians have real
multiplication by Z[(1 +

√
5)/2]:

y2 = ux5 − (u + t− 3)x4 + (u2 − 3u + 5− 2t)x3 − tx2 + (u− 3)x− 1.

He noted that his family is strictly contained in the following family of such curves
given by Brumer in a 1988 letter to Serre (the equation for the family is reproduced
in [14]):9

y2+(x3+x+1+c(x2+x))y = b+(1+3b)x+(1−bd+3b)x2+(b−2bd−d)x3−bdx4.

Brumer is currently preparing a paper on curves with real multiplication [15]; pre-
sumably it will explain further how to come up with such examples. Mestre used
a generalization of his construction to prove the existence of a two-parameter fam-
ily of genus 19 hyperelliptic curves whose Jacobians split completely into elliptic
curves.

Rodriguez-Villegas [101] shows how to exhibit all curves of genus 2 whose unpo-
larized Jacobians are isomorphic to the product of two elliptic curves with complex
multiplication by a specified order O in an imaginary quadratic field. For the case
O = Z[(1+

√
−163)/2], one of the seven such curves (up to isomorphism over C) is

y2 = 6−3h(x)hι(x),

where

h(x) = (−151790 + 7144
√
−163)x3 + (1752597 + 129789

√
−163)x2

+ (510153− 47481
√
−163)x + (−37250− 1596

√
−163),

and
hι(x) = x3h(−1/x).

(bar denoting complex conjugation of coefficients). This curve is isomorphic to its
conjugate, so its field of moduli is Q, but it has no model over Q. The same is true
for all seven of the curves, except for one which is actually definable over Q.

The equation
u2 − (t3 + t− 1)u = t3 + t2 − t

is a model for the genus 2 modular curve X∗(191). The rational point (t, u) =
(∞,∞) is the cusp, the points (0,−1), (0, 0), (∞,−1), (2,−1) are CM-points of con-
ductor 7, 11, 19, and 28, respectively, and (2, 10) is a non-CM point corresponding
to a 191-isogeny between two elliptic curves conjugate over Q(

√
2036079533) with

additive reduction at a prime above 191 and good reduction elsewhere [34]. A model

9Although Brumer’s family appears to have three independent parameters, Elkies points out

that the moduli space of curves whose Jacobians have real multiplication by Z[(1+
√

5)/2] is only

2-dimensional, so many of the curves in the family must be isomorphic at least over Q.
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for X∗(191) was independently obtained by Murabayashi [89], who also computed
explicit models for some other modular curves of prime level.

13. Reasonable projects for the near future?

Below are what might be considered “next steps” in the development of algo-
rithms for curves of genus 2 or more. The author conjectures that these particular
problems, with the exception of the third, are accessible enough that many of them
will be solved within the next few years.

• Implement a polynomial time algorithm for counting points on genus 2
curves over Fp.

• Generalize the algorithm in [5] to show (modulo heuristic assumptions)
that one can find the group structure of the Jacobian and solve the discrete
logarithm problem for an arbitrary curve of large genus over a small finite
field, in subexponential time.

• Find an algorithm for computing the characteristic polynomial of Frobe-
nius for a hyperelliptic curve of large genus over a small finite field, in
subexponential time.

• Devise and implement an algorithm for calculating the endomorphism ring
over Q of the Jacobian of a genus 2 curve over Q, or at least an algorithm
for determining if such a Jacobian is simple (over Q or over Q).

• Devise and implement an algorithm for calculating the size of the torsion
subgroup of the Jacobian of a genus 2 curve over Q.

• Automate the (x− T )-descent completely. (Write a program that takes as
input the coefficients of a sextic f(x) ∈ Q[x], and spits out an upper bound
for the rank of the Jacobian of y2 = f(x).)

• Improve upon Flynn’s theory of heights so that one can provably find gener-
ators of Mordell-Weil groups of genus 2 curves with coefficients of moderate
size.

• Automate the method of Chabauty and Coleman. (Let X be the curve
y2 = f(x) with f(x) ∈ Q[x] sextic. Write a program that takes as input
f(x), an odd prime p not dividing the discriminant of f(x), and a non-
torsion point P in J(Q), and returns the size of the intersection of the
closure of Z · P in J(Qp) with the image of X(Qp) in J(Qp) under one of
the embeddings of X into J .)

• Extend the minimal model program of Liu so that it is able to compute the
fiber type and conductor exponent at p = 2.

• List all genus 2 curves over Q whose Jacobians have good reduction out-
side 2, up to isomorphism over Q.10

• Verify that the genus 2 curves in Smart’s putative isogeny classes [108] are
actually isogenous. More generally, devise and implement an algorithm for
determining with proof whether the Jacobians of two given genus 2 curves
are isogenous over Q. Better still, given a genus 2 curve over Q, list all
others which have an isogenous Jacobian.

10If a curve has good reduction outside 2, then so does its Jacobian. Thus the list in question
should at least contain the 428 curves in [108].
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• Assemble a list of genus 2 curves over Q of small conductor, analogous to
the lists for elliptic curves in [6] and [29].11

It is the author’s hope that this survey will entice the reader into working on some
of these projects.
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