
19. Hermitian inner products

Definition 19.1. Let V be a complex vector space. A Hermitian inner
product on V is a function

〈 , 〉 : V × V −→ C,
which is

• conjugate-symmetric, that is

〈u, v〉 = 〈v, u〉.
• sesquilinear, that is linear in the first factor

〈λu, v〉 = λ〈u, v〉,
for all scalars λ and

〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉,
for all vectors u1, u2 and v.
• positive that is

〈v, v〉 ≥ 0.

• non-degenerate that is if

〈u, v〉 = 0

for every v ∈ V then u = 0.

We say that V is a complex inner product space. The associated
quadratic form is the function

Q : V −→ C,
defined by

Q(v) = 〈v, v〉.

Since a Hermitian inner product is linear in the first variable and
conjugate-symmetric (so that switching factors we get the complex con-
jugate), we have

〈u, λv〉 = λ〈u, v〉 and 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉.
Note that

〈v, v〉,
is a real number (it is equal to its complex conjugate, by conjugate-
symmetry) and so it makes sense to ask for it to be non-negative. One
can define the associated norm, as in the real case, and one can recover
the Hermitian inner product from the norm, as in the real case.

The classic example of a Hermitian inner product space is the stan-
dard one on Cn,

〈x, y〉 =
∑

xiyi.
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For this inner product, we have

〈Au, v〉 = 〈u,At
v〉.

Definition 19.2. Let A ∈ Mn,n(C). We say that A is Hermitian if
A is invertible and

A−1 = A
t
.

Note that a real orthogonal matrix is Hermitian if and only if it is
orthogonal.

Theorem 19.3 (Spectral Theorem). Let A ∈ C be a Hermitian sym-
metric matrix, so that

A
t

= A.

Then A is diagonalisable and the eigenvalues of A are real.

Proof. Let m(x) be the minimal polynomial of A. Then m(x) has at
least one complex root λ. But the roots of m(x) are the eigenvalues
of A and so A must have an eigenvector v with eigenvalue λ. Possibly
rescaling, we may assume that the norm of v is one.

If we extend v to a basis of Cn and apply Gram-Schmidt (the same
algorithm works for a Hermitian inner product) we may find an or-
thonormal basis of Cn. Let V2 be the span of the last n − 1 vectors.
Then V2 is isomorphic to Cn−1 with the standard Hermitian inner prod-
uct and the restriction of A to V2 defines a Hermitian matrix A2 on
Cn−1. By induction on the dimension, A2 has a basis of eigenvectors,
and these gave a basis of eigenvectors of Cn. Thus A is diagonalisable.

On the other hand

λ〈v, v〉 = 〈λv, v〉
= 〈Av, v〉

= 〈v, At
v〉

= 〈v,Av〉
= 〈v, λv〉
= λ〈v, v〉.

Since 〈v, v〉 6= 0 it follows that λ = λ so that λ is real. It follows that
the eigenvalues of A are real. �

Corollary 19.4. Let A ∈Mn,n(R) be a symmetric matrix.
Then A is diagonalisable.

Proof. Since A is real symmetric it is Hermitian. But then it is di-
agonalisable over C. It follows that the sum of the dimensions of the
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eigenspaces is equal to n. As the eigenvalues of A are real and the
nullity of A over R and over C are equal, it follows that the sum of
the dimensions of the eigenspaces is equal to n, over R. But then A is
diagonalisable over R. �
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