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PIVOTAL ESTIMATION OF NONPARAMETRIC

FUNCTIONS VIA SQUARE-ROOT LASSO∗

By Alexandre Belloni and Victor Chernozhukov and Lie Wang

We proposed a self-tuning
√
lasso method for estimating non-

parametric regression under non-Gaussian heteroskedastic noise. An
attractive feature of the approach is that it does not rely on the
knowledge of the scale of the noise, unlike many other ℓ1-regularized
methods. In turn this translates into a robustness property that al-
lows the same penalty level to be appropriate for a variety of design
conditions.

Our analysis is based on new identification conditions that al-
low for repeated regressors. We derive various non-asymptotic per-
formance bounds for

√
lasso including prediction norm rate, ℓ1-rate,

ℓ∞-rate, and sharp sparsity bound. In order to cover heteroskedastic
non-Gaussian noise, we rely on moderate deviation theory for self-
normalized sums to achieve Gaussian-like results under weak condi-
tions. Moreover, we derive bounds on the performance of ordinary
least square (ols) applied to the model selected by

√
lasso accounting

for possible misspecification of the selected model. Under mild con-
ditions the rate of convergence of ols post

√
lasso is no worse than√

lasso even with a misspecified selected model and possibly better
otherwise. We show that the robustness properties of

√
lasso also ex-

tend to the parametric noiseless case and unbounded variance case.
In the first case,

√
lasso recovers the true parameter value exactly,

in sharp contrast to lasso. In the second case under symmetric dis-
turbances,

√
lasso can be applied with similar penalty choices and

still achieve near Gaussian rates in several cases, in contrast to lasso
which would require a substantially larger penalty level.

Key Words: square-root lasso, high-dimensional sparse regression,
imperfect model selection

1. Introduction. We consider the nonparametric regression problem,
where the underlying function of interest has unknown function form of
basic covariates. To be more specific, we consider a nonparametric regression
model:

(1.1) yi = f(zi) + σǫi, i = 1, . . . , n,
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where yi’s are the outcomes, zi’s are vectors of fixed basic covariates, ǫi’s
are independent disturbances, f is the regression function, and σ is a scaling
parameter. The goal is to recover the regression function f . To achieve this
goal, we use linear combinations of regressors xi = P (zi) to approximate f ,
where P (zi) is a p-vector of transformations of zi. We are interested in the
high dimension low sample size case, in which we potentially have p > n, to
attain a flexible functional form. In particular, we are interested in a sparse
model over the regressors xi to describe the regression function.

Now the model above can be written as yi = x′iβ0 + ri + σǫi, where
fi = f(zi) and ri := fi − x′iβ0 is the approximation error. The vector β0
is a solution of an oracle problem that balances bias and variance, and
the cardinality of the support of coefficient β0 is denoted by s := ‖β0‖0.
It is well known that ordinary least square (ols) is generally inconsistent
when p > n. However, the sparsity assumption makes it possible to estimate
these models effectively by searching for approximately the right set of the
regressors. In particular, ℓ1-based penalization methods have been playing a
central role. The ℓ1-norm penalized methods have been extensively studied
in the high dimensional settings [5, 9, 14, 18, 29, 34, 33]. It was demonstrated
that, under appropriate choice of penalty level, the ℓ1-penalized least squares
estimators achieve the rate σ

√
s/n
√
log p, which is very close to the oracle

rate σ
√
s/n achievable when the true model is known. Importantly, in the

context of linear regression, these ℓ1-regularized problems can be cast as
convex optimization problems which make them computationally efficient
(polynomial time). We refer to [5, 7, 8, 6, 11, 15, 16, 23, 29] for a more
detailed review of the existing literature which has been focusing on the
homoskedastic case.

In this paper, we focus on the case of nonparametric regression under
non-Gaussian heteroskedastic errors. We propose to use a self-tuning

√
lasso

which is pivotal with respect to the scaling parameter σ. Such pivotallity
is in sharp contrast to many others ℓ1-regularized methods, for example
lasso. The penalization parameter in those methods should majorate the
non-negligible spurious correlation between the noise terms and the large
number of additional regressors. Typically, such penalty level scales linearly
with the unknown scaling parameter σ of the noise. Simple upper bounds for
σ can be derived based on the empirical variance of the response variable.
However, upper bounds on σ can lead to unnecessary over regularization
which translates into larger bias and slower rates of convergence. Moreover,
such over regularization can lead to the exclusion of relevant regressors from
the selected model harming post model selection estimators.

In the homoskedastic parametric model studied in [4], the choice of the
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penalty parameter becomes pivotal given the covariates and the distribu-
tion of the error term. In contrast, in the nonparametric heteroskedastic
setting we need to account for the impact of the approximation error and
the loadings to derive a practical and theoretical justified choice of penalty
level. We rely on moderate deviation theory for self-normalized sums and on
data-dependent empirical process inequalities to achieve Gaussian-like re-
sults in many non-Gaussian cases provided log p = o(n1/3) improving upon
results derived in the parametric case that required log p . log n, see [4]. We
perform a thorough non-asymptotic theoretical analysis of the choice of the
penalty parameter.

In order to allow for more general designs we propose two new condition
measures. Unlike previous conditions, they are tailored for establishing pre-
diction norm. This is appealing because the rates in the prediction norm is
the relevant metric in nonparametric estimation, and can be established un-
der weaker conditions. (For instance, the results for prediction rates remain
unaffected if repeated regressors are included.) Nonetheless, the proposed
quantities alone cannot yield results in ℓp-norm (although they can be used
to potentially sharp ℓp-norm rates in combination with previous conditions).
Interestingly, we also show that the restricted eigenvalue proposed in [5] can
be used to bound these new quantities.

The second set of contributions is to derive new finite sample upper
bounds for prediction norm rate of convergence, ℓ1-rate of convergence, ℓ∞-
rate of convergence, and sparsity of the

√
lasso estimator. A lower bound on

the rate of convergence for the prediction norm is also established.
The third contribution aims to remove the potentially significant bias

towards zero introduced by the ℓ1-norm regularization employed in (2.3).
We consider the post model selection estimator that applies ordinary least
squares (ols) to the model selected by

√
lasso. It follows that if the model

selection works perfectly then the ols post
√
lasso estimator is simply the

oracle estimator whose properties are well known. However, perfect model
selection might be unlikely for many designs of interest. This is usually the
case in a nonparametric setting. Thus, we are also interested in the properties
of ols post

√
lasso when perfect model selection fails, including cases where

the oracle model is not completely selected by
√
lasso.

Furthermore, we also study two extreme cases: (i) parametric noiseless and
(ii) nonparametric unbounded variance.

√
lasso does have interesting theo-

retical guarantees for these two extreme cases. For the parametric noiseless
case, for a wide range of the penalty level,

√
lasso achieves exact recovery

in sharp contrast to lasso. In the nonparametric unbounded variance case,√
lasso estimator can still be consistent with penalty choice that does not
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depend on the standard deviation of the noise. We develop the necessary
modifications on the penalty loadings and derive finite-sample bounds for
the case of symmetric noise. For bounded designs the results match the
Gaussian-noise rates up to a factor of (En[ǫ

2
i ])

1/2 which tends to grow slowly
in this case. We provide specific bounds to the case of Student’s t-distribution
with 2 degrees of freedom where En[ǫ

2
i ] .P log n.

Notation. In making asymptotic statements, we assume that n → ∞
and p = pn → ∞, and we also allow for s = sn → ∞. In what follows,
all parameter values are indexed by the sample size n, but we omit the
index whenever this does not cause confusion. We use the notation (a)+ =
max{a, 0}, a∨ b = max{a, b} and a∧ b = min{a, b}. The ℓ2-norm is denoted
by ‖ · ‖, the ℓ1-norm is denoted by ‖ · ‖1, the ℓ∞-norm is denoted by ‖ · ‖∞,
and the ℓ0-norm ‖ · ‖0 denotes the number of non-zero components of a
vector. Given a vector δ ∈ IRp, and a set of indices T ⊂ {1, . . . , p}, we
denote by δT the vector in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T , and
by |T | the cardinality of T . The symbol E[·] denotes the expectation. We
also use standard empirical process notation En[f(zi)] :=

∑n
i=1 f(zi)/n and

Gn(f(zi)) :=
∑n

i=1(f(zi)− E[f(zi)])/
√
n. We also denote Ē[·] = EnE[·] and

the L2(Pn)-norm by ‖f‖Pn,2 = (En[f
2
i ])

1/2. Given covariate values x1, . . . , xn,
we define the prediction norm of a vector δ ∈ IRp as ‖δ‖2,n = {En[(x

′
iδ)

2]}1/2,
and given values y1, . . . , yn we define Q̂(β) = En[(yi − x′iβ)2]. We use the
notation a . b to denote a ≤ Cb for some constant C > 0 that does not
depend on n (and therefore does not depend on quantities indexed by n like
p or s); and a .P b to denote a = OP (b).

2. Nonparametric regression model and Estimators. Consider
the nonparametric regression model:

(2.1) yi = f(zi) + σǫi, ǫi ∼ Fi, E[ǫi] = 0, Ē[ǫ2i ] = 1, i = 1, . . . , n,

where zi are vectors of fixed regressors, ǫi are independent errors, and σ is
the scaling factor of the errors. In order to recover the regression function
f we consider linear combinations of the covariates xi = P (zi) which are p-
vectors of transformation of zi normalized so that En[x

2
ij] = 1 (j = 1, . . . , p).

The goal is to estimate the nonparametric regression function f at the
design points, namely the values fi = f(zi) for i = 1, . . . , n. In many ap-
plications of interest, especially in the nonparametric settings, there is no
exact sparse model or, due to noise, it might be inefficient to rely on an
exact model. However, there might be a sparse model that yields a good ap-
proximation to the true regression function f in equation (2.1). The target
coefficients β0 that we consider solves the following oracle risk minimization
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problem:

(2.2) min
β∈IRp

En[(fi − x′iβ)2] +
σ2‖β‖0
n

,

where the problem above yields an upper bound on the risk of the best k-
sparse least squares estimator in the case of homoskedastic Gaussian errors,
i.e. the best estimator among all least squares estimators that use k out of
p components of xi to estimate fi, for i = 1, . . . , n. The solution β0 of the
oracle achieves a balance between the mean square of the approximation
error ri := fi−x′iβ0 and the variance, where the latter is determined by the
complexity of the model (number of non-zero components of β0).We consider
the case that the support of the best sparse approximation T = supp(β0) is
unknown.

We call β0 the oracle target value, T := support(β0) the oracle model,
s := |T | = ‖β0‖0 the dimension of the oracle model, and x′iβ0 the oracle
approximation to fi. We summarize the previous setting in the following
condition.

Condition ASM. We have data {(yi, zi) : i = 1, . . . , n} that for each
n obey the regression model (2.1), where yi are the outcomes, zi are vectors
of fixed regressors, and ǫi are i.n.i.d. errors. The vector β0 is defined by
(2.2) where the regressors xi := P (zi) are normalized so that En[x

2
ij ] = 1,

j = 1, . . . , p.

2.1. Heteroskedastic
√
lasso. In this section we formally define the esti-

mators which are tailored to deal with heteroskedasticity.
We propose to consider the

√
lasso estimator defined as

(2.3) β̂ ∈ arg min
β∈IRp

√
Q̂(β) +

λ

n
‖Γβ‖1,

where Q̂(β) = En[(yi − x′iβ)
2], Γ = diag(γ1, . . . , γp), γj , j = 1, . . . , p, is

a penalty loading. The scaled ℓ1-penalty allows to sharp adjustments to
efficiently deal with heteroskedasticity. Indeed, every penalty loading can be
taken equal to 1 in the traditional case of homoskedastic errors1.

In order to reduce the shrinkage bias intrinsic from
√
lasso, we consider

the post model selection estimator that applies ordinary least squares (ols)
to the model T̂ selected by

√
lasso. Formally, set

T̂ = supp(β̂) = {j ∈ {1, . . . , p} : |β̂j | > 0},
1In the heteroskedastic case, if {λ,Γ} are appropriate choices, then {λ‖Γ‖∞, Ip} is

also an appropriate choice but potentially conservative, i.e. leading to overpenalization.
Throughout we assume Γjj ≥ 1 for j = 1, . . . , p.
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and define the ols post
√
lasso estimator β̃ as

(2.4) β̃ ∈ arg min
β∈Rp

√
Q̂(β) : βj = 0 if j ∈ T̂ c.

2.2. Conditions on the Gram Matrix. It is known that the Gram matrix
En[xix

′
i] plays an important role in the analysis of estimators in this setup.

In our case, the smallest eigenvalue of the Gram matrix is 0 if p > n which
creates identification problems. Thus, to restore identification, one needs
to restrict the type of deviation vectors δ from β0 that we will consider.
Because of the ℓ1 regularization, it will be important to consider vectors δ
that belong to the restricted set ∆c̄ defined as

∆c̄ = {δ ∈ R
p : ‖ΓδT c‖1 ≤ c̄‖ΓδT ‖1, δ 6= 0}, for c̄ ≥ 1.

We will state the bounds in terms of the following restricted eigenvalues
of the Gram matrix En[xix

′
i]:

κc̄ := min
δ∈∆c̄

√
s‖δ‖2,n
‖ΓδT ‖1

.(2.5)

The restricted eigenvalues can depend on n, T , and Γ, but we suppress the
dependence in our notations. The restricted eigenvalues (2.5) are variants of
the restricted eigenvalue introduced in Bickel, Ritov and Tsybakov [5].

Next consider the minimal and maximal m-sparse eigenvalues of a matrix
M ,
(2.6)

φmin(m,M) := min
‖δTc‖0≤m,δ 6=0

δ′Mδ

‖δ‖22
, and φmax(m,M) := max

‖δTc‖0≤m,δ 6=0

δ′Mδ

‖δ‖22
.

Typically we consider minimal and maximalm-sparse eigenvalues associated
with the Grammatrix En[xix

′
i], and the rescaled Grammatrix Γ−1En[xix

′
i]Γ

−1.
For convenience, when the matrix is omitted from the notation we refer to
the Gram matrix, namely φmin(m) = φmin(m,En[xix

′
i]) and φmax(m) =

φmax(m,En[xix
′
i]). These quantities play an important role in the sparsity

and post model selection analysis. Moreover, sparse eigenvalues provide a
simple sufficient condition to bound restricted eigenvalues. Indeed, following
[5], we can bound κc̄ from below by

κc̄ > max
m>0

√
φmin(m)

‖Γ‖∞

(
1−

√
φmax(m)

φmin(m)
c̄
√
s/m

)
.

Thus, ifm-sparse eigenvalues are bounded away from zero and from above

(2.7) 0 < k ≤ φmin(m) ≤ φmax(m) ≤ k′ <∞, for all m ≤ 4(k′/k)2c̄2s,
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then κc̄ ≥
√
φmin(4(k′/k)2c̄2s)/[2‖Γ‖∞]. We note that (2.7) only requires

the eigenvalues of certain “small” (m+ s)× (m+ s) submatrices of the large
p× p Gram matrix to be bounded from above and below.

For standard arbitrary bounded dictionaries arising in the nonparamet-
ric estimations, for example regression splines, orthogonal polynomials, and
trigonometric series (see [26]), the following lemma proved in [2] provides
primitive conditions under which the sparse eigenvalues well behaved with
high probability when the values of xi, i = 1, . . . , n were generated randomly.

Lemma 1 (Sparse eigenvalues, bounded regressors case). Suppose x̃i,
i = 1, . . . , n, are i.i.d. vectors, such that the population design matrix E[x̃ix̃

′
i]

has ones on the diagonal, and its s log n-sparse eigenvalues are bounded
from above by ϕmax < ∞ and bounded from below by ϕmin > 0. Define
xi as a normalized form of x̃i, namely xij = x̃ij/(En[x̃

2
ij])

1/2. Suppose that

max1≤i≤n ‖x̃i‖∞ ≤ Kn a.s., and K2
ns log

4(n) log(p ∨ n) = o(nϕ2
min/ϕmax).

Then, for any m ≥ 0 such that m+ s ≤ s log n, the empirical maximum and
minimal m-sparse eigenvalues obey: φmax(m) ≤ 4ϕmax, and φmin(m) ≥
ϕmin/4, with probability approaching 1 as n→∞.

Other sufficient conditions for (2.7) are provided by [5], [34], and [18]. [5]
and others also provide different sets of sufficient primitive conditions for κc̄
to be bounded away from zero.

3. Overview of Asymptotic Results and Comparisons under Het-

eroskedasticity.

3.1. Rates of Convergence of
√
lasso and post-

√
lasso. In this section we

formally state the main algorithm to compute the estimators and we provide
rates of convergence results under simple primitive conditions. We defer the
finite sample analysis under significantly weaker conditions to Section 4.

We propose setting the penalty level as

(3.1) λ = (1 + un)c
√
n(Φ−1(1− α/2p) + 1 + un)

and the penalty loadings according to the following iterative algorithm.

Algorithm 1 (Estimation of Square-root Lasso Loadings). Choose α ∈
(0, 1), ν ≥ 0 as a tolerance level and a constant K > 1 as an upper bound
on the number of iterations.
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Step 0. Set k = 0, λ as defined in (3.1). For w > (Ē[ǫ4i ])
1/4/(Ē[ǫ2i ])

1/2

define γ̂j,0 = w(En[x
4
ij ])

1/4, j = 1, . . . , p.

Step 1. Compute the
√
lasso estimator β̂ based on the current

penalty loadings {γ̂j,k, j = 1, . . . , p}.
Step 2. Set γ̂j,k+1 := 1 ∨

√
En[x

2
ij(yi − x′iβ̂)2]/

√
En[(yi − x′iβ̂)2].

Step 3. If max1≤j≤p |γ̂j,k − γ̂j,k+1| 6 ν or k > K, stop;
otherwise set k ← k + 1 and go to Step 1.

The parameter 1−α is a confidence level which guarantees near-oracle per-
formance with probability at least 1−α; we recommend α = 0.05/ log n. The
constant c > 1 is the slack parameter used in [5]; we recommend c = 1.01.
The parameter un is intended to account for the approximation errors; we
recommend un = 0.1/ log n. The parameter w is pivotal to the scaling pa-
rameter σ and its goal is to simply bound the ratio of moments; we rec-
ommend w = 2 (which covers several interesting distributions). Finally, we
recommend iterating the procedure to avoid unnecessary overpenalization
since at each iteration more precise estimates of the penalty loadings tend
to be achieved. These recommendations are valid either in finite or large
samples under the conditions stated below. They are also supported by the
finite-sample experiments reported in Section E.

Remark 1. Algorithm 1 relies on the
√
lasso estimator β̂. Another pos-

sibility is to use the post
√
lasso estimator β̃. Asymptotically, the analysis

would be conceptually very similar.

The following is a set of simple sufficient conditions which is used to
clearly communicate the results.

Condition P. There exist a finite constant q ≥ 6 such that the noise
obeys supn≥1 Ē[|ǫqi |] < ∞, the covariates obey supn≥1max1≤j≤p En[|xqij |] <
∞, and we have that infn≥1min1≤j≤p En[x

2
ijE[ǫ

2
i ]] > 0. Moreover, we have

that supn≥1 φmax(s log n)/φmin(s log n) <∞, s log(p∨n) = o(n), and log p =

o(n1/3).
Based on this choice of penalty level and loadings, the following corol-

lary summarizes the asymptotic performance of
√
lasso for commonly used

designs.

Corollary 1 (Asymptotic performance of
√
lasso). Suppose Condi-

tions ASM and P hold, let c > 1 and c̄ = (c + 1)/(c − 1). Let the penalty
level λ be set as in (3.1) with α = 0.05/ log n, and penalty loadings as in
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Algorithm 1 with un = 0.1/ log n. Then we have that

‖β̂ − β0‖2,n .P (cs + σ)

√
s log p

n
, and ‖β̂ − β0‖1 .P (cs + σ)

√
s2 log p

n
.

If in addition ‖En[xix
′
i]− I‖∞ = o(1/s) we have

‖β̂ − β0‖∞ .P (cs + σ)

√
log p

n
.

The result above establishes that
√
lasso achieves the same near oracle

rate of convergence of lasso despite of not knowing the scaling parameter σ.
The results above allows for heteroskedastic errors with mild restrictions on
its moments. It also substantially improve the restrictions on the growth of
p relative to n with respect to [4]. We note that the theory allows for any
choice of iterations K in Algorithm 1.

The following corollary summarizes the performance of ols post
√
lasso

under commonly used designs.

Corollary 2 (Asymptotic performance of ols post
√
lasso). Under the

conditions of Corollary 1 let m̂ = |T̂ \ T |. We have that

‖β̃ − β0‖2,n .P cs + σ

√
s log p

n
and m̂ .P s.

Under the conditions of the corollary above, the upper bounds on the rates
of convergence of

√
lasso and ols post

√
lasso coincide. This occurs despite the

fact that
√
lasso may in general fail to correctly select the oracle model T as

a subset, that is T 6⊆ T̂ . Nonetheless, there is a class of well-behaved models
in which ols post

√
lasso rate improves upon the rate achieved by

√
lasso.

More specifically, this occurs if m̂ = oP (s) and T ⊆ T̂ with probability
going to 1 or in the case of perfect model selection,2 when T = T̂ with
probability going to 1. Moreover, under mild conditions, the upper bound
for the prediction norm rate of

√
lasso is sharp, i.e. in general the rate

of convergence cannot be faster than σ
√
log p

√
s/n. Thus the use of the

post model selection estimator leads to a strict improvement in the rate of
convergence on these well-behaved models.

2Results on lasso’s model selection performance derived on Wainright [33] can be ex-
tended to the

√
lasso estimator based on Theorem 3 and 4.
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3.2. A Benchmark: Oracle Projection Estimators under Orthonormal Ran-
dom Design. Next we discuss examples of nonparametric estimation. Later,
we will compare the results derived here for

√
lasso and ols post

√
lasso with

projection estimators.
Consider the nonparametric model (2.1) where f is a function from [0, 1] to

R, ǫi ∼ N(0, 1) and zi ∼ Uniform(0, 1), i = 1, . . . , n. Given a basis {Pj(·)}∞j=1

the projection estimator with k terms is defined as

f̂ (k)(z) =
k∑

j=1

θ̂jPj(z) where θ̂j = En[yiPj(zi)] and θ̂(k) = (θ̂1, . . . , θ̂k, 0, . . .)
′.

Projection estimators are particularly appealing in orthonormal designs.

Example 1 (Series Approximations in Sobolev Balls). Let the basis
{Pj(·)}∞j=1 be the trigonometric basis for L2[0, 1] and suppose that f belongs
to the periodic Sobolev class W per(α,L), that is, f(0) = f(1) and

f ∈W (α,L) =

{
f ∈ [0, 1]→ IR :

f (α−1) is absolutely continuous and∫ 1
0 [f

(α)(z)]2dz ≤ L2

}
.

It follows that the Fourier coefficients θj =
∫ 1
0 f(z)Pj(z)dz of f satisfy∑∞

j=1 |θj | < ∞ and θ ∈ Θ(α,L) = {θ ∈ ℓ2(N) :
∑∞

j=1 a
2
jθ

2
j ≤ L2/π2α}

where aj = jα for even j and aj = (j−1)α for odd j represents the L2-norm
of the α-derivative of the jth base function, α ≥ 1 and L > 0. Thus, for
each z ∈ [0, 1]

f(z) =
∞∑

j=1

θjPj(z).

Now consider the oracle problem of choosing the best s-dimensional projec-
tion/series estimator. This oracle problem solves

min
0≤k≤n

c2k + σ2
k

n
.

Here c2k is an upper bound on the approximation error

Ē

[{
fi −

∑k

j=1
θjPj(zi)

}2
]

of the projection estimator. By Lemma 12, we have c2k ≤ Ck−2α where the
constant C is uniform in f ∈W per(α,L). A rate-optimal choice of the num-

ber of series terms satisfies k = s ≤ ⌊V n
1

2α+1 ⌋, for some V > 0 uniformly
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over f ∈ W per(α,L), and implies an upper bound on the oracle risk given
by

c2s +
σ2s

n
. σ2n−

2α
2α+1 .

Example 2 (p-Rearranged α-Ellipsoids). Define the set of coefficients

ΘS(α, p, L) =

{
θ ∈ ℓ2(N) :

∃ permutation γ : {1, . . . , p} → {1, . . . , p}∑p
j=1 j

2αθ2γ(j) +
∑∞

j=p+1 j
2αθ2j ≤ L2

}
.

We consider functions f such that for some θ ∈ ΘS(α, p, L) we have for
each z ∈ [0, 1] that

f(z) =
∞∑

j=1

θjPj(z)

where {Pj(·), j ≥ 1} is a bounded orthonormal basis. In this setting, we will
consider a sparse series approximation and the associated sparse projection
estimator based on a support T̃ ⊂ {1, . . . , p} as

f T̃ (z) =
∑

j∈T̃

θjPj(z), f̂ T̃ (z) =
∑

j∈T̃

θ̂jPj(z) where θ̂j = En[Pj(zi)yi].

Thus, the approximation error associated with f T̃ is

c2
T̃
=
∑

j∈T̃ c

θ2j =
∑

j∈{1,...,p}\T̃

θ2j +
∑

j≥p+1

θ2j ≤
∑

j∈{1,...,p}\T̃

θ2j + Cp−2α.

The class of p-rearranged α-ellipsoids reduces significantly the relevance of
the order of the basis. In this case the oracle chooses the best s-dimensional
projection/series with support T = {γf (1), . . . , γf (s)} ⊂ {1, . . . , p} where γf
is a permutation that makes the sequence {|θγf (j)|}

p
j=1 non-increasing. In

particular, this oracle weakly improves upon the conventional series estima-
tor described in Example 1 since

p∑

j=s+1

θ2j ≥
∑

j∈{1,...,p}\T
θ2j .

In general, the rate-optimal choice of the number of series terms is at

least as good as in Example 1, |T | = s ≤ ⌊V n
1

2α+1 ⌋, which implies an upper
bound on the oracle risk given by

c2s + σ2
s

n
. σ2n−

α
2α+1 .
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However, in many cases the sparse approximation can improve substantially
over the standard series approximation. For example, suppose that Fourier
coefficients feature the following pattern θj = 0 for j ≤ j0 and |θj| ≤ Kj−a

for j > j0. In this case, the standard series approximation based on the first
k ≤ j0 terms,

∑k
j=1 θjPj(z), fails to provide any predictive power for f(z),

and the corresponding standard series estimator based on k terms there-
fore also fails completely. On the other hand, series approximation based
on k > j0 terms carry unnecessary j0 terms which increase the variance of
the series estimator. For instance, if θn+1 = 1 and θj = 0 for j 6= n + 1,
the standard series estimator fails to be consistent. In contrast, the sparse
series approximation avoids the first unnecessary n term to achieve consis-
tency.

Remark 2 (Comparison between
√
lasso and Oracle Projection Estima-

tors under orthogonal random design). Consider the case where the regres-
sion function f belongs to the Sobolev class W (α,L), α ≥ 1, and we have an
orthonormal random design. Example 1 yields that the rate-optimal choice
for the size of the support of β0 is s . n1/[2α+1]. Based on Lemma 12 we
have that the oracle projection estimator achieves

‖θ̂(s) − β0‖ .P σ
√
s/n . n−α/[2α+1].

Under this random design, and mild regularities conditions (see Corollary
1), without knowing the exact support,

√
lasso achieves

‖β̂ − β0‖ .P (σ + cs)
√
s log p/n . n−α/[2α+1]

√
log p.

However, in the case of a sparse model in which the first components are no
longer relevant, like in the p-rearranged α-ellipsoids, the adaptivity of

√
lasso

allows it to preserve its rate while the oracle series projection estimator is
not consistent.

4. Finite-sample analysis of
√

lasso. Next we establish several finite-
sample results regarding the

√
lasso estimator. Importantly, these results are

based on new conditions on the design matrix. Such conditions are invariant
to the introduction of repeated regressors and well behaved if the restricted
eigenvalue discussed in Section 2.2 is well behaved.

We highlight that most of the analysis in this section is pure geometric.
That is, conditional not only on the covariates x1, . . . , xn, but also on the
noise ǫ1, . . . , ǫn, through the event

λ/n ≥ c‖Γ−1S̃‖∞, where S̃ = En[xi(σǫi + ri)]/
√

En[(σǫi + ri)2]
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is the score of
√
Q̂ at β0. Therefore, by choosing λ and Γ such that the event

above holds with high probability (as discussed in Section 4.5) the stated
results hold with high probability.

4.1. New Identification Conditions. In Section 2.2 we discussed typical
high-level and primitive conditions on the design matrix En[xix

′
i] used in the

recent literature [5]. Although previous proposed quantities like restrictive
eigenvalues seem appropriate to the development of rates of convergence
in ℓp-norms, at least in some designs of interest, they still have a gap for
establishing the rate of convergence in the prediction norm.

In an attempt to (at least partially) fill this gap we propose the following
new quantities
(4.1)

̺c̄ := sup
δ ∈ ∆c̄, ‖δ‖2,n > 0

‖Γ(δ + β0)‖1 ≤ c̄‖Γβ0‖1

|S̃′δ|
‖δ‖2,n

and κ̄ := inf
‖ΓδTc‖1<‖ΓδT ‖1

√
s‖δ‖2,n

‖ΓδT‖1 − ‖ΓδT c‖1
.

These quantities depend on n, T , and Γ; in what follows, we suppress this
dependence whenever this is convenient.

The quantity κ̄ in (4.1) is motivated by the original restricted eigenvalue
(2.5) conditions imposed in Bickel, Ritov and Tsybakov [5] and the compat-
ibility condition of van de Geer [28], and van de Geer and Bülhmann [30].
Either condition implies that κ̄ > 0 holds, and that is what ultimately is
used to derive rates. Indeed, in the case of the compatibility condition in [28]
we can take ν(T ) = 0 which is weaker than required ν(T ) > 0 in [28]. Thus
(4.1) is an interesting condition since it was shown in [5] and [30] that the
RE and the compatibility assumptions are relatively weak and are implied
by many other assumptions in the literature.

The control of ̺c̄ also plays a critical role in our analysis. In our view
it is a novel concept since ̺c̄ depends not only on the design but also on
the error and approximation terms. Fundamentally, it can be controlled via
empirical process techniques based on entropy functions since the vectors δ
are required to be in the restricted set ∆c̄ and to have an ℓ1-norm not much
larger than ‖Γβ0‖1.

It is interesting to note that the restricted eigenvalue condition of Bickel,
Ritov and Tsybakov [5] yields a possible way to control both κ̄ and ̺c̄,
namely,

κ̄ := inf
‖ΓδTc‖1<‖ΓδT ‖1

√
s‖δ‖2,n

‖ΓδT ‖1 − ‖ΓδT c‖1
≥ min

δ∈∆1

√
s‖δ‖2,n
‖ΓδT ‖1

≥ min
δ∈∆c̄

√
s‖δ‖2,n
‖ΓδT ‖1

= κc̄,

̺c̄ ≤ sup
δ∈∆c̄

‖Γ−1S̃‖∞‖Γδ‖1
‖δ‖2,n

≤ sup
δ∈∆c̄

‖Γ−1S̃‖∞(1 + c̄)‖ΓδT ‖1
‖δ‖2,n

≤ (1 + c̄)
√
s

κc̄
‖Γ−1S̃‖∞,
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as formally stated in the results below .
Thus, an analysis based on the quantities ̺c̄ and κ̄ will be more general

than the one relying on (2.5) only. Notably, the quantities κ̄ and ̺c̄ can be
well behaved even in the presence of repeated regressors.

Lemma 2. Assume that Condition ASM holds. We have κ̄ ≥ κ1. If
|T | = 1 we have that κ̄ ≥ 1/‖Γ‖∞. Moreover, if copies of regressors are
included with the same corresponding penalty loadings, we have that κ̄ does
not change.

Lemma 3. Assume that Condition ASM holds. We have ̺c̄ ≤ (1 +
c̄)
√
s‖Γ−1S̃‖∞/κc̄. We have that ̺c̄ does not change if we include copies

regressors.

We close this section with the result establishing that the
√
lasso estimator

satisfies the two constraints in the definition of ̺c̄ provided the penalty level
λ is set appropriately. That encompass the usual restricted set ∆c̄ and an
additional condition on the rescaled ℓ1-norm of the estimator.

Lemma 4. Assume that for some c > 1 we have λ/n ≥ c‖Γ−1S̃‖∞, then
we have for c̄ = (c+ 1)/(c − 1) that

(4.2) ‖Γβ̂T c‖1 ≤ c̄‖Γ(β̂T − β0)‖1 and ‖Γβ̂‖1 ≤ c̄‖Γβ0‖1.

Remark 3. The quantities above are particularly suitable for the analy-
sis based on the criterion function conducted in this work. Another potential
interesting measure which is tailored for an analysis based on first order
conditions is

υc̄ := min
δ∈∆c̄

‖En[xix
′
i]δ‖∞

‖δ‖2,n
which will also be invariant if repeated regressors are included.

Remark 4. Although we apply these definitions to
√
lasso we note that

they also apply to lasso and other ℓ1-penalized estimators. A natural gener-
alization of ̺c̄ to other penalized estimators would replace S̃ with ∇Q̂(β0)
in its definition.

4.2. Finite-sample bounds on rates. We start establishing a finite-sample
bound for the prediction norm for the

√
lasso estimator. We note that this

bound is established under heteroskedasticity, without knowledge of the scal-
ing parameter σ, and under the weak design conditions described in Section
4.1.
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Theorem 1 (Finite Sample Bounds on Estimation Error). Under Con-
dition ASM, let c > 1, c̄ = (c + 1)/(c − 1), and suppose that λ obeys the
growth restriction ρ̄ := λ

√
s/[nκ̄] < 1. If λ/n ≥ c‖Γ−1S̃‖∞, then

‖β̂ − β0‖2,n ≤ 2

√
Q̂(β0)

(̺c̄ + ρ̄)

1− ρ̄2 .

We recall that the choice of λ does not depend on the scaling parameter
σ. The impact of σ in the bound above comes through the factor

√
Q̂(β0) ≤ σ

√
En[ǫ2i ] + cs.

Thus, this result leads to the same rate of convergence as in the case of the
lasso estimator that knows σ since En[ǫ

2
i ] concentrates around one under

(2.1) and the law of large numbers.
The analysis of

√
lasso raises several different issues from that of lasso, and

so the proof of Theorem 1 is involved. In particular, we need to invoke the
additional growth restriction ρ̄ < 1, which is not present in the lasso analysis
that treats σ as known. This is required because the introduction of the
square-root removes the quadratic growth which would eventually dominates
the ℓ1 penalty for large enough deviations from β0. This condition ensures
that the penalty its not too large so identification of β0 is still possible. Note
however that when this side condition fails and σ is bounded away from
zero, lasso is not guaranteed to be consistent since its rate of convergence is
typically given by σλ

√
s/[nκc̄].

Also, the event λ/n ≥ c‖Γ−1S̃‖∞ accounts for the approximation errors
r1, . . . , rn. That has two implications. First, the impact of cs on the estima-
tion of β0 is diminished by a factor of (̺c̄ + ρ̄)/(1 − ρ̄2). Second, despite of
the approximation errors, we have β̂ − β0 ∈ ∆c̄. This is in contrast to the
analysis that relied on λ ≥ cn‖En[ǫixi]‖∞ instead, see [5, 2]. We build on
the latter to establish ℓ1-rate and ℓ∞-rate of convergence.

Theorem 2 (ℓ1-rate of convergence). Under Condition ASM, if λ/n ≥
c‖Γ−1S̃‖∞, for c > 1 and c̄ := (c+ 1)/(c − 1), then

‖Γ(β̂ − β0)‖1 ≤ (1 + c̄)
√
s‖β̂ − β0‖2,n/κc̄.

Moreover, if ρ̄ = λ
√
s/[nκ̄] < 1, we have

‖Γ(β̂ − β0)‖1 ≤
2(1 + c̄)

√
s

κc̄

√
Q̂(β0)

(̺c̄ + ρ̄)

1− ρ̄2 .
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The results above highlight that, in general, κ̄ alone is not suitable to
bound ℓ1 and ℓ2 rates of convergence. This is expected since repeated re-
gressors are allowed in the design.

Theorem 3 (ℓ∞-rate of convergence). Under Condition ASM, if λ/n ≥
c‖Γ−1S̃‖∞, for c > 1 and c̄ = (c + 1)/(c − 1), then for ̥ = ‖Γ−1En[xix

′
i −

I]Γ−1‖∞ we have

‖Γ−1(β̂ − β0)‖∞√
Q̂(β0)

≤ (1 + c)λ

cn
+
λ2

n2

√
s

κ̄

‖β̂ − β0‖2,n√
Q̂(β0)

+̥
‖Γ(β̂ − β0)‖1√

Q̂(β0)
.

Moreover, if ρ̄ = λ
√
s/[nκ̄] < 1 we have

‖Γ−1(β̂ − β0)‖∞√
Q̂(β0)

≤ (1 + c)λ

cn
+

2λρ̄

n

̺c̄ + ρ̄

1− ρ̄2 + 2(1 + c̄)̥

√
s

κc̄

̺c̄ + ρ̄

1− ρ̄2 .

The ℓ∞-rate is bounded based on the prediction norm and the ℓ1-rate of
convergence. Since we have ‖ ·‖∞ ≤ ‖·‖1, the result is meaningful for nearly
orthogonal designs so that ‖Γ−1En[xix

′
i − I]Γ−1‖∞ is small. In fact, near

orthogonality also allows to bound the restricted eigenvalue κc̄ from below.
In the homoskedastic case for Lasso (which corresponds to Γ = I) [5] and [15]
established that if for some u ≥ 1 we have ‖En[xix

′
i]− I‖∞ ≤ 1/(u(1 + c̄)s)

then κc̄ ≥
√

1− 1/u. In that case, the first term determines the rate of
convergence in the ℓ∞-norm.

We close this subsection establishing relative finite-sample bound on the
estimation of Q̂(β0) based on Q̂(β̂) under the assumptions of Theorem 1.

Theorem 4 (Estimation of Q̂(β0)). Under Condition ASM, if λ/n ≥
c‖Γ−1S̃‖∞ and ρ̄ = λ

√
s/[nκ̄] < 1, for c > 1 and c̄ := (c + 1)/(c − 1) we

have

−̺c̄‖β̂ − β0‖2,n ≤
√
Q̂(β̂)−

√
Q̂(β0) ≤ ρ̄‖β̂ − β0‖2,n.

Moreover, if ρ̄ = λ
√
s/[nκ̄] < 1 we have

−2̺c̄
√
Q̂(β0)

̺c̄ + ρ̄

1− ρ̄2 ≤
√
Q̂(β̂)−

√
Q̂(β0) ≤ 2ρ̄

√
Q̂(β0)

̺c̄ + ρ̄

1− ρ̄2 .

Thus, under the mild condition ̺c̄+ ρ̄ = o(1), Theorem 4 establishes that

√
Q̂(β̂) = (1 + o(1))

√
Q̂(β0).
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The quantity Q̂(β̂) is particularly relevant in the analysis of
√
lasso since

it appears in the first-order condition which is the key to establish sparsity
properties.

4.3. Finite-sample bounds relating sparsity and prediction norm. In this
section we investigate sparsity properties and lower bounds on the rate of
convergence in the prediction norm of the

√
lasso estimator. It turns out

these results are connected via the first-order optimality conditions. We
start with a technical lemma.

Lemma 5 (Relating Sparsity and Prediction Norm). Under Condition

ASM, let T̂ = supp(β̂) and m̂ = |T̂ \ T |. For any λ > 0 we have

λ

n

√
Q̂(β̂)

√
|T̂ | ≤

√
|T̂ |‖Γ−1S̃‖∞

√
Q̂(β0)+

√
φmax(m̂,Γ−1En[xix′i]Γ

−1)‖β̂−β0‖2,n.

The proof of the above lemma relies on the optimality conditions which
implies that the selected support has binding dual constraints. Intuitively, for
any selected component, there is a shrinkage bias which introduces a bound
on how close the estimated coefficient can be from the true coefficient. Based
on the technical lemma above and Theorem 4, we establish the following
result.

Theorem 5 (Lower Bound on Prediction Norm). Under Condition ASM,
T̂ = supp(β̂) and m̂ = |T̂ \T |, if λ/n ≥ c‖Γ−1S̃‖∞, ρ̄ = λ

√
s/[nκ̄] < 1, where

c > 1 and c̄ = (c+ 1)/(c − 1), we have

‖β̂ − β0‖2,n ≥
λ

√
|T̂ |

√
Q̂(β0)

n
√
φmax(m̂,Γ−1En[xix

′
i]Γ

−1)

(
1− 1

c
− 2̺c̄(̺c̄ + ρ̄)

1− ρ̄2
)
.

It is interesting to contrast the lower bound on the prediction norm above
with the corresponding lower bound for lasso. In the case of lasso, as derived

in [16], the lower bound does not have the term

√
Q̂(β0) since the impact

of the scaling parameter σ is accounted in the penalty level λ. Thus, under
Condition ASM and σ bounded away from zero and above, the lower bounds
for lasso and

√
lasso are very close.

Next we proceed to bound the size of the selected support T̂ = supp(β̂)
for the

√
lasso estimator relative to the size s of the support of the oracle

estimator β0.
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Theorem 6 (Sparsity bound for
√
lasso). Under Condition ASM, T̂ =

supp(β̂), and m̂ := |T̂ \ T |. If λ/n ≥ c‖Γ−1S̃‖∞, ρ̄ = λ
√
s/[nκ̄] < 1/

√
2,

and 2̺c̄(̺c̄+ρ̄)
1−ρ̄2 ≤ 1/c̄, for c > 1 and c̄ = (c+ 1)/(c − 1), we have

|T̂ | ≤ 4c̄2
(
n

λ

̺c̄ + ρ̄

1− ρ̄2
)2

φmax(m̂,Γ
−1

En[xix
′
i]Γ

−1)

Moreover, if κc̄ > 0 we have

m̂ ≤ s · (4c̄2/κc̄)2 min
m∈M

φmax(m,Γ
−1

En[xix
′
i]Γ

−1)

where M = {m ∈ N : m > sφmax(m,Γ
−1En[xix

′
i]Γ

−1) · 2(4c̄2/κc̄)2}.

The slightly more stringent side condition ensures that the right hand
side of the bound in Theorem 5 is positive. Asymptotically, mild conditions,
for example the design condition that φmax(s log n)/φmin(s log n) . 1, the
event λ/n ≥ c‖Γ−1S̃‖∞ and the side condition s log(p/α) = o(n), imply
that for n large enough, the size of the selected model is of the same order
of magnitude as the oracle model, namely

m̂ . s.

Remark 5. The first sparsity result in the theorem above relates to the
prediction norm rate of convergence, under conditions of Theorem 1

(4.3)


n
λ

‖β̂ − β0‖2,n
2

√
Q̂(β0)




2

≤
(
n

λ

̺c̄ + ρ̄

1− ρ̄2
)2

.

Typically, the term on the right hand side of (4.3) will be of the order of
s. This can be the case even if κc̄ = 0. For instance, well behaved designs
discussed in Lemma 1 with a single repeated regressor.

Remark 6. Consider the case that f(z) = 1 and p repeated regressors
xi = (1, . . . , 1)′ are used (which allows us to set Γ = I). In this setting there
is a sparse solution

√
lasso but also there is a solution which has p nonzero

regressors. Nonetheless, the prediction norm can be well behaved since it is
invariant under repeated regressors, κ̄ = 1 and ̺c̄ ≤ En[ǫi] .P 1/

√
n. Thus,

the sparsity bound above will become trivial not because of the prediction
norm rate but because of the maximum sparse eigenvalue. Indeed, in this case
φmax(m,Γ

−1En[xix
′
i]Γ

−1) = m+ 1 and the setM becomes empty leading to
the trivial bound m̂ ≤ p.
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4.4. Finite-sample bounds on the estimation error of ols post
√
lasso.

Based on the model selected by
√
lasso estimator, T̂ := supp(β̂), we con-

sider the ols estimator restricted to these data-driven selected components.
If model selection works perfectly (as it will under some rather stringent con-
ditions), then this estimator is simply the oracle estimator and its properties
are well known. However, we are more interested on the case when model
selection does not work perfectly, as occurs for many designs in applications.

The following theorem establishes bounds on the prediction error of the
ols post

√
lasso estimator. The analysis accounts for the data-driven choice

of components and for the possibly having a misspecified selected model (i.e.
T 6⊆ T̂ ). In what follows we let ϑ := maxj=1,...,p En[x

2
ijE[ǫ

2
i ]].

Theorem 7 (Performance of ols post
√
lasso). Under Condition ASM,

let T̂ = supp(β̂) denote the support selected by
√
lasso, m̂ = |T̂ |. Then we

have that the post-
√
lasso estimator satisfies for any C ≥ 1, with probability

at least 1− 1/C2 − 1/[9C2 log p], we have

‖β̃ − β0‖2,n ≤ Cσ
√

ϑ

φmin(s)

s

n
+ cs + 24Cσ

√
m̂ log p

nφmin(m̂)

√
ϑ ∨ max

j=1,...,p
En[x2ijǫ

2
i ] + cT̂

where cT̂ = minβ∈IRp

√
En[(fi − x′iβT̂ )2]. Moreover, if λ/n ≥ c‖Γ−1S̃‖∞ for

c > 1, c̄ = (c+ 1)/(c − 1), and ρ̄ = λ
√
s/[nκ̄] < 1, then we have

cT̂ = min
β∈IRp

√
En[(fi − x′iβT̂ )2] ≤ cs + 2

√
Q̂(β0)

(̺c̄ + ρ̄)

1− ρ̄2 .

The analysis builds upon the sparsity and prediction rate of the
√
lasso

estimator, and on a data-dependent empirical process inequality derived
in [3]. The heteroskedasticity of the noise is bounded through the factor
ϑ = maxj=1,...,p En[x

2
ijE[ǫ

2
i ]] and the random term max1≤j≤p En[x

2
ijǫ

2
i ].

Remark 7. We note that the random term in the bound above can be
controlled in a variety of ways. For example, if the fourth moment of the
regressors and noise are uniformly bounded we have maxj=1,...,p En[x

2
ijǫ

2
i ] ≤

(En[ǫ
4
i ])

1/2 maxj=1,...,p(En[x
4
ij ])

1/2 .P 1. Alternatively, under other moment

conditions and log p = o(n) we have maxj=1,...,p En[x
2
ijǫ

2
i ] ≤ ϑ + oP (1). In

the homoskedastic case, E[ǫ2i ] = 1 for all i = 1, . . . , n, we have that ϑ = 1.

4.5. Penalty Level and Loadings for
√
lasso. Here we analyze the data-

driven choice for the penalty level and loadings proposed in Algorithm 1
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which are pivotal with respect the scaling parameter σ. Our focus is on
establishing that λ/n dominates the rescaled score, namely

(4.4) λ/n ≥ c‖Γ−1S̃‖∞, where c > 1,

which implies that β̂ − β0 ∈ ∆c̄, c̄ = (c + 1)/(c − 1), so that the results
in the previous sections hold. We note that the principle of setting λ/n to
dominate the score of the criterion function is motivated by [5]’s choice of
penalty level for lasso under homoskedasticity and known σ. Here, in order
to account for heteroskedasticity the penalty level λ/n needs to majorate
the score rescaled by the penalty loadings.

Remark 8. In the parametric case, ri = 0, i = 1, . . . , n, the score does
not depend on σ nor β0. Under the homoskedastic Gaussian assumption,
namely Fi = Φ and Γ = I, the score is in fact completely pivotal conditional
on the covariates. This means that in principle we know the distribution of
‖Γ−1S̃‖∞, or at least we can compute it by simulation. Therefore the choice
of λ can be directly made by the quantiles of the ‖Γ−1S̃‖∞, see [4].

In order to achieve Gaussian-like behavior under heteroskedastic non-
Gaussian disturbances we have to rely on certain conditions on the moment
of the noise, the growth of p relative to n, and also consider α to be either
bounded away from zero or approaches zero not too rapidly. In this section
we focus on the following set of conditions.

Condition D. There exist a finite constant q > 4 such that the distur-
bance obeys sup

n≥1
Ē[|ǫi|q] < ∞, and the covariates obey sup

n≥1
max
1≤j≤p

En[|xij |q] <
∞.

Condition R. Let wn =
(
α−1 log nCqĒ[|ǫi|q∨4]

)1/q
/n1/4 < 1/2, and set

un such that un/[1 + un] ≥ wn, un ≤ 1/2. Moreover, for 1 ≤ ℓn → ∞,
assume that

n1/6/ℓn ≥ (Φ−1(1− α/2p) + 1) max
1≤j≤p

(En[|x3ij |E[|ǫ3i |]])1/3/(En[x
2
ijE[ǫ

2
i ]])

1/2.

In the following theorem we provide sufficient conditions for the validity
of the penalty level and loadings proposed. For convenience, we use the
notation that Γ̂k = diag(γ̂1,k, . . . , γ̂p,k) and Γ∗ = diag(γ∗1 , . . . , γ

∗
p) where

γ∗j = 1 ∨
√
En[x2ijǫ

2
i ]/
√

En[ǫ2i ], j = 1, . . . , p.

Theorem 8. Suppose that Conditions ASM, D and R hold. Consider
the choice of penalty level λ in (3.1) and penalty loadings Γk, k ≥ 0, in
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Algorithm 1. For k = 0 we have that

P

(
λ

n
≥ c‖Γ̂−1

0 S̃‖∞
)
≤ 1−α

(
1 +

A

ℓ3n
+

3

log n

)
−4(1 + un)Ē[|ǫi|q]

un n1−[2/q]

− CqĒ[|ǫi|q∨8]
(w4 − Ē[ǫ4i ])

q/4nq/8
∧ 2Ē[|ǫi|q]
n1∧(q/4−1)(w4 − Ē[ǫ4i ])

q/4
.

Moreover, conditioned on λ/n ≥ c‖Γ̂−1
0 S̃‖∞, provided

2 max
1≤i≤n

‖xi‖∞
(
2

√
Q̂(β0) max

Γ=Γ̂0,Γ∗

{
̺c̄(Γ) + ρ̄(Γ)

1− ρ̄2(Γ)

}
+ cs

)
≤ σ

√
En[ǫ2i ](

√
1 + un−1),

we have λ/n ≥ c‖Γ̂−1
k S̃‖∞ for all k ≥ 1.

The main insight of the analysis is the use of the theory of moderate devi-
ation for self normalized sums, [13] and [10]. The growth condition depends
on the number of bounded moments q of regressors and of the noise term.
Under condition D and α fixed, condition R is satisfied for n sufficiently large
if log p = o(n1/3). This is asymptotically less restrictive that the condition
log p ≤ (q − 2) log n required in [4]. However, condition D is more stringent
than some conditions in [4] thus neither set of condition dominates the other.

Under conditions on the growth of p relative to n, Theorem 8 establishes
the validity of the penalty level and loadings in Algorithm 1. It also shows
that many nice properties of the penalty level in the homoskedastic Gaussian
case continue to hold in many non-Gaussian settings. The following corollary
summarizes the asymptotic behavior of the penalty choices.

Corollary 3. Suppose that Conditions ASM, D and R hold, and penalty
level λ is chosen as (3.1) and the loadings Γ̂k by Algorithm 1. If log p =
o(n1/3), 1/κ2c̄ . 1, and max1≤i≤n ‖xi‖∞(cs +

√
(s log p)/n) = o(1), then

there exists un = o(1) such that for every k ≥ 0

P (λ/n ≥ c‖Γ̂−1
k S̃‖∞) ≥ 1− α(1 + o(1)), ‖Γ̂k‖∞ .P 1

and λ ≤ (1 + o(1))c
√

2n log(p/α).

4.6. Extreme cases. In this section we show that the robustness advan-
tage of

√
lasso extends to two extreme cases. Such robustness arises because

the score is normalized by

√
Q̂(β0) avoiding the dependence of σ in the

penalty level. This self-normalization allows for similar choices of λ to be
valid in many more settings.
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4.6.1. Parametric noiseless case. The analysis developed in the previous
section immediately covers the case σ = 0 if cs > 0. The case that cs = 0
is also zero, thus Q̂(β0) = 0, allows for exact recovery under less stringent
restrictions.

Theorem 9 (Exact recovery for the parametric noiseless case). Under
Condition ASM, let σ = 0 and cs = 0. Suppose that λ > 0 obeys the growth
restriction λ

√
s < nκ̄. Then we have that ‖β̂ − β0‖2,n = 0. Moreover, if

κ1 > 0, we have β̂ = β0.

Remark 9. It is worth mentioning that for any λ > 0, unless β0 =
0, lasso cannot achieve exact recovery. Moreover, it is not obvious how to
properly set the penalty level for lasso even if we knew a priori that it is
a parametric noiseless model. In contrast,

√
lasso intrinsically adjusts the

penalty λ by a factor of

√
Q̂(β̂). Under mild conditions Theorem 4 ensures

that

√
Q̂(β̂) =

√
Q̂(β0) = 0 which allows for the perfect recovery. Also note

that the lower bound derived in Theorem 5 becomes trivially zero.

4.6.2. Nonparametric unbounded variance. Next we turn to the unbounded
variance case. We note that the theory developed in Section 4 does not rely
on the assumption that Ē[ǫ2i ] = 1. In particular, Theorem 1 relies only on
the choice of penalty level and penalty loadings to satisfy the assumed con-
dition λ/n ≥ c‖Γ−1S̃‖∞. Under symmetric errors we further exploit the
self-normalized theory to develop a choice of penalty level and loadings,

(4.5) λ = (1 + un)c
√
n(1 +

√
2 log(2p/α)) and γj = max

1≤i≤n
|xij |,

where as before we typically can take un = o(1).

Theorem 10 (Bounds on the
√
lasso prediction norm for symmetric er-

rors). Consider a nonparametric regression model with data {(yi, zi) : i =
1, . . . , n}, yi = f(zi) + ǫi, xi = P (zi) such that En[x

2
ij ] = 1 (j = 1, . . . , p),

ǫi’s are independent symmetric errors, and β0 defined as any solution to
(2.2). Let the penalty level and loadings as in (4.5) where un is such that
P (En[σǫ

2
i ] > (1 + un)En[(σǫi + ri)

2]) ≤ γ. Moreover let P (En[ǫ
2
i ] ≤ 1) ≤ η.

If ρ̄ = λ
√
s/[nκ̄] < 1, then with probability at least 1− α− γ − η we have

‖β̂ − β0‖2,n ≤
2(̺c̄ + ρ̄)

1− ρ̄2
(
cs + σ

√
En[ǫ2i ]

)
.
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The rate of convergence will be affected by how fast En[ǫ
2
i ] diverges. That

is, the final rate will depend on the particular tail properties of the distribu-
tion of the noise. The next result establishes primitive finite-sample bounds
in the case of ǫi ∼ t(2), i = 1, . . . , n.

Corollary 4 (Bounds on the
√
lasso prediction norm for ǫi ∼ t(2)).

Under the setting of Theorem 10, suppose that ǫi ∼ t(2) are i.i.d. distur-
bances. Then for any τ ∈ (0, 1/2), with probability at least 1 − α − τ −
2 log(4n/τ)
nun/[1+un]

− 72 log2 n
n1/2(log n−6)2

, we have

‖β̂ − β0‖2,n ≤ 2

(
cs + σ

√
log(4n/τ) + 2

√
2/τ

)
̺c̄ + ρ̄

1− ρ̄2 .

Asymptotically, if 1/α = o(log n) and s log(p/α) = o(nκ̄), considering
τ = 1/ log n, the result above yields that with probability 1− α(1 + o(1))

‖β̂ − β0‖2,n . x̄(cs + σ
√

log n)

√
s log p

n

where the scaling factor σ <∞ is fixed. Thus, despite of the infinite variance
of the noise in the t(2) case, for bounded designs,

√
lasso rate of convergence

differs from the Gaussian case only by a
√
log n factor.

APPENDIX A: PROOFS OF SECTION 4.1

Proof of Lemma 2. The first result holds by definition. Note that for
a diagonal matrix with positive entries, ‖v‖2,n ≥ ‖Γv‖2,n/‖Γ‖∞ and, since
En[x

2
ij ] = 1, ‖v‖2,n ≤ ‖v‖1 for any v ∈ IRp. For any δ such that ‖ΓδT c‖1 <

‖ΓδT ‖1 we have that

‖δ‖2,n

‖ΓδT ‖1−‖ΓδTc‖1
≥ ‖Γ‖−1

∞ ‖Γδ‖2,n

‖ΓδT ‖1−‖ΓδTc‖1

≥ ‖Γ‖−1

∞ (‖ΓδT ‖2,n−‖ΓδTc‖2,n)
‖ΓδT ‖1−‖ΓδTc‖1

≥ ‖Γ‖−1

∞ (‖ΓδT ‖2,n−‖ΓδTc‖1)
‖ΓδT ‖1−‖ΓδTc‖1

.

The result follows since ‖ΓδT ‖2,n = ‖ΓδT ‖1 if |T | = 1.
To show the third statement note that T does not change by including

repeated regressors. Next let δ1 and δ2 denote the vectors in each copy of
the regressors so that δ = δ1 + δ2. It follows that

‖δ‖2,n
‖ΓδT ‖1 − ‖ΓδT c‖1

=
‖δ‖2,n

‖Γδ1T ‖1 − ‖Γδ1T c‖1 − ‖Γδ2T ‖1 − ‖Γδ2T c‖1

which is minimized in the case that δ̃1 = δ, δ̃1T = δ1T + δ2T , δ̃
1
T c = δ1T c + δ2T c ,

and δ̃2 = 0.
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Proof of Lemma 3. Note that T does not change by including repeated
regressors. Next let δ1 and δ2 denote the vectors in each copy of the regressors
so that δ = δ1 + δ2. It follows that |S̃′δ|/‖δ‖2,n = |S̃′δ̃|/‖δ̃‖2,n where δ̃T =
δ1T + δ2T , and δ̃T c = δ − δ̃T . This transformation also increases the ℓ1-norm
of the coefficients over T and is considered so that δ̃ ∈ ∆c̄. Finally, the
restriction of δ̃ to its first p components is also considered into the definition
of ̺c̄ without the repeated regressors.

APPENDIX B: PROOFS OF SECTION 4.2-4.4

Proof of Theorem 1. First note that by Lemma 4 we have δ̂ := β̂ −
β0 ∈ ∆c̄. By optimality of β̂ and definition of κ̄, ρ̄ = λ

√
s/[nκ̄] we have

(B.1)√
Q̂(β̂)−

√
Q̂(β0) ≤

λ

n
‖Γβ0‖1−

λ

n
‖Γβ̂‖1 ≤

λ

n
(‖Γδ̂T ‖1−‖Γδ̂T c‖1) ≤ ρ̄‖δ̂‖2,n.

Multiplying both sides by

√
Q̂(β̂)+

√
Q̂(β0) and using that (a+ b)(a− b) =

a2 − b2

(B.2) ‖δ̂‖22,n ≤ 2En[(σǫi + ri)x
′
iδ̂] +

(√
Q̂(β̂) +

√
Q̂(β0)

)
ρ̄‖δ̂‖2,n.

From (B.1) we have

√
Q̂(β̂) ≤

√
Q̂(β0) + ρ̄‖δ̂‖2,n so that

‖δ̂‖22,n ≤ 2En[(σǫi + ri)x
′
iδ̂] + 2

√
Q̂(β0)ρ̄‖δ̂‖2,n + ρ̄2‖δ̂‖22,n.

Since |En[(σǫi + ri)x
′
iδ̂]| =

√
Q̂(β0)|S̃′δ̂| ≤

√
Q̂(β0)̺c̄‖δ̂‖2,n we obtain

‖δ̂‖22,n ≤ 2

√
Q̂(β0)̺c̄‖δ̂‖2,n + 2

√
Q̂(β0)ρ̄‖δ̂‖2,n + ρ̄2‖δ̂‖22,n,

and the result follows provided ρ̄ < 1.

Proof of Theorem 4. Let δ := β̂ − β0 ∈ ∆c̄ under the condition that
λ/n ≥ c‖Γ−1S̃‖∞ by Lemma 4.

First we establish the upper bound. By optimality of β̂

√
Q̂(β̂)−

√
Q̂(β0) ≤

λ

n
(‖Γβ0‖1−‖Γβ̂‖1) ≤

λ

n
(‖ΓδT ‖1−‖ΓδT c‖1) ≤

λ
√
s

nκ̄
‖δ‖2,n

by definition of κ̄ (note that if δ /∈ ∆1 we have Q̂(β̂) ≤ Q̂(β0)). The result
follows from Theorem 1 to bound ‖δ‖2,n.
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To establish the lower bound, by convexity of

√
Q̂ and the definition of

̺c̄ we have √
Q̂(β̂)−

√
Q̂(β0) ≥ −S̃′δ ≥ −̺c̄‖δ‖2,n.

Thus, by Theorem 1, letting ρ̄ := λ
√
s/[nκ̄] < 1, we obtain

√
Q̂(β̂)−

√
Q̂(β0) ≥ −2

√
Q̂(β0)

̺2c̄+̺c̄ρ̄
1−ρ̄2

.

Proof of Theorem 5. We can assume that

√
Q̂(β0) > 0 otherwise the

result is trivially true. In the event λ/n ≥ c‖Γ−1S̃‖∞, by Lemma 5
(B.3)(√

Q̂(β̂)

Q̂(β0)
− 1

c

)
λ

n

√
Q̂(β0)

√
|T̂ | ≤

√
φmax(m̂,Γ−1En[xix′i]Γ

−1)‖β̂ − β0‖2,n.

Under the condition ρ̄ = λ
√
s/[nκ̄] < 1, we have by the lower bound in

Theorem 4

(
1− 1

c
− 2̺c̄(̺c̄ + ρ̄)

1− ρ̄2
)

λ

√
Q̂(β0)

n
√
φmax(m̂,Γ−1En[xix′i]Γ

−1)

√
|T̂ | ≤ ‖β̂ − β0‖2,n.

Proof of Theorem 6. For notational convenience we denote φn(m) =

φmax(m,Γ
−1En[xix

′
i]Γ

−1). We can assume that

√
Q̂(β0) > 0 otherwise the

result follows by Theorem 9 which establish β̂ = β0.
In the event λ/n ≥ c‖Γ−1S̃‖∞, by Lemma 5

(B.4)

(√
Q̂(β̂)

Q̂(β0)
− 1

c

)
λ

n

√
Q̂(β0)

√
|T̂ | ≤

√
φn(m̂)‖β̂ − β0‖2,n.

Under the condition ρ̄ = λ
√
s/[nκ̄] < 1, we have by Theorem 1 and Theorem

4 that
(
1− 2̺c̄(̺c̄ + ρ̄)

1− ρ̄2 − 1

c

)
λ

n

√
Q̂(β0)

√
|T̂ | ≤

√
φn(m̂)2

√
Q̂(β0)

̺c̄ + ρ̄

1− ρ̄2 .

Since we assume 2̺c̄(̺c̄+ρ̄)
1−ρ̄2 ≤ 1/c̄ we have

√
|T̂ | ≤ 2c̄

√
φn(m̂)

n

λ

̺c̄ + ρ̄

1− ρ̄2 .
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By Lemma 3 and λ/n ≥ c‖Γ−1S̃‖∞, we have ̺c̄ ≤ [λ/n][
√
s/κc̄](1 + c̄)/c.

Lemma 2 yields κ̄ ≥ κc̄ so that ρ̄ ≤ λ
√
s/[nκc̄]. Thus, under the condition

ρ̄ ≤ 1/
√
2,

(B.5) |T̂ | ≤ s φn(m̂)

(
4c̄2

κc̄

)2

,

since 1 + [1/c] + [c̄/c] = c̄.
Consider any m ∈ M, and suppose m̂ > m. Therefore by sublinearity of

sparse eigenvalues

m̂ ≤ s ·
⌈
m̂

m

⌉
φn(m)

(
4c̄2

κc̄

)2

.

Thus, since ⌈k⌉ < 2k for any k ≥ 1 we have m < s · 2φn(m)(4c̄2/κc̄)
2

which violates the condition of m ∈ M and s. Therefore, we must have
m̂ ≤ m. In turn, applying (B.5) once more with m̂ ≤ m we obtain m̂ ≤
s · φn(m)(4c̄2/κc̄)

2. The result follows by minimizing the bound over m ∈
M.

Proof of Theorem 7. Let X = [x1; . . . ;xn]
′ denote a n by p matrix

and for a set of indices S ⊂ {1, . . . , p} we definePS = X[S](X[S]′X[S])−1X[S]′

denote the projection matrix on the columns associated with the indices in
S. We have that f−Xβ̃ = (I−P

T̂
)f−P

T̂
ǫ where I is the identity operator.

Therefore we have
(B.6)√

n‖β0 − β̃‖2,n = ‖Xβ0 −Xβ̃‖2 ≤
√
ncs + ‖f −Xβ̃‖2

≤ √ncs + ‖(I − PT̂ )f‖2 + σ‖PT ǫ‖2 + σ‖PT̂ \T ǫ‖2.

Since ‖X[T̂ \ T ]/√n(X[T̂ \ T ]′X[T̂ \ T ]/n)−1‖ ≤
√
1/φmin(m̂), m̂ = |T̂ \ T |,

the last term in (B.6) satisfies

‖PT̂ \T ǫ‖2 ≤
√

1/φmin(m̂)‖X[T̂ \ T ]′ǫ/
√
n‖2 ≤

√
m̂/φmin(m̂)‖X ′ǫ/

√
n‖∞.

By Corollary 8, with probability at least 1− 1/[9C2 log p], we have

‖X ′ǫ/
√
n‖∞ =

√
n‖En[ǫixi]‖∞ ≤ 24C

√
ϑ ∨ max

j=1,...,p
En

[
x2ijǫ

2
i

]√
log p.

We proceed to bound ‖PT ǫ‖2. Since E[ǫi] = 0 and E[ǫ2i ] ≤ ϑ,

E
[
‖X[T ]′ǫ/

√
n‖22
]
= nE[En[ǫixiT ]

′
En[ǫixiT ]] =

∑

j∈T
En[E[ǫ

2
i ]x

2
ij] ≤ ϑs.
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Therefore, by Chebyshev inequality we have with probability at least 1−
1/C2

‖PT ǫ‖2 ≤
‖X[T ]′ǫ/

√
n‖2√

φmin(s)
≤ C

√
ϑ√

φmin(s)

√
s.

These relations yield the first result.
The second result follows from Theorem 1 and

min
β

√
En[(fi − x′iβT̂ )2] ≤

√
En[(fi − x′iβ̂)2] ≤ cs + ‖β0 − β̂‖2,n.

APPENDIX C: PROOFS OF SECTION 4.5

Proof of Theorem 8. Let tn = Φ−1(1−α/2p) and recall we have wn =
(α−1 log nCqĒ[|ǫi|q∨4])1/q < 1/2 under Condition R. Thus
(C.1)

P
(
λ/n ≥ c‖Γ̂−1

k S̃‖∞
)

= P
(
(1 + un)(tn + 1 + un) ≥

√
n‖Γ̂−1

k S̃‖∞
)

≤ P (σ
√

En[ǫ2i ] ≤
√
1 + un

√
En[(σǫi + ri)2])+

+P (1 + un ≥
√
n‖Γ̂−1

k En[xiri]‖∞/σ
√

En[ǫ2i ])+

+P (tn ≥ max1≤j≤p
√
n|En[xijǫi]|/

√
En[x2ijǫ

2
i ])+

+P (
√
1 + unγ̂j,k ≥

√
En[x

2
ijǫ

2
i ]/En[ǫ

2
i ], j = 1, . . . , p).

Next we proceed to bound each term.
First Term of (C.1). By Lemma 7 with v = wn we have that

P (σ
√

En[ǫ2i ] ≤
√
1 + un

√
En[(σǫi + ri)2]) ≤ ψ(wn) +

2(1+un)max1≤i≤n E[ǫ2i ]
(1−wn)un n

≤ α
logn + 4(1+un)(Ē[|ǫi|q])2/q

un n1−[2/q] .

Second Term of (C.1). By Lemma 6 and using that γ̂j,k ≥ 1,

‖Γ̂−1
k En[xiri]‖∞ ≤ ‖En[xiri]‖∞ ≤ σ/

√
n.

Thus, since [2un + u2n]/[1 + un]
2 ≥ un/[1 + un] ≥ wn, we have

P ((1 + un)σ
√

En[ǫ2i ] ≥
√
n‖Γ̂−1

k En[xiri]‖∞) ≤ P (
√
En[ǫ2i ] ≥ 1/(1 + un))

≤ P (|En[ǫ
2
i ]− 1| ≥ [2un + u2n]/[1 + un]

2)
≤ ψ(wn) ≤ α/ logn.
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Third Term of (C.1). Let t̄ = min1≤j≤p(En[x
2
ijE[ǫ

2
i ]])

1/2/(En[|x3ij |E[|ǫ3i |]])1/3 >
0. By Lemma 16, since tn ≤ t̄ n1/6 − 1 by Condition R, we have that there
is an universal constant A, such that

P

(
max1≤j≤p

√
n|En[xijǫi]|√
En[x2

ijǫ
2
i ]

> tn

)
≤ p max1≤j≤p P

(
√
n|En[xijǫi]|√
En[x2

ijǫ
2
i ]

> tn

)

≤ 2p Φ̄(tn)
(
1 + A

ℓ3n

)
≤ α

(
1 + A

ℓ3n

)

where the last inequality follows from the definition of tn.
Fourth Term of (C.1). Let Γ̂k = diag(γ̂1,k, . . . , γ̂p,k). First we consider the
initial choice of γ̂j,0 = w(En[x

4
ij ])

1/4. Then we have

√
1 + unγ̂j,0 ≥

√
En[x2ijǫ

2
i ]/
√

En[ǫ2i ] for all j = 1, . . . , p

provided that
√
1 + unw

√
En[ǫ2i ] ≥ (En[ǫ

4
i ])

1/4. We bound this probability

P (
√
1 + unw

√
En[ǫ2i ] < (En[ǫ

4
i ])

1/4) ≤ P (En[ǫ
4
i ] > w4) + P

(
En[ǫ

2
i ] <

1
1+un

)

≤ CqĒ[|ǫi|q∨8]

vqnq/8 ∧ 2Ē[|ǫi|q]
n1∧(q/4−1)vq/4

+ ψ
(

un
1+un

)

where v4 = (w4 − Ē[ǫ4i ]) ∨ 0. The result follows since un/[1 + un] ≥ wn so
that ψ(un/[1 + un]) ≤ α/ log n.

To show the second result of the theorem, consider the iterations of Al-
gorithm 1 for k ≥ 1 conditioned on λ/n ≥ c‖Γ̂−1

k S̃‖∞ for k = 0. First we
establish a lower bound on γ̂j,k. Let x∞j = max1≤i≤n |xij |,

γ̂j,k = 1 ∨
√

En[x2
ij(yi−x′

iβ̂)
2]

√
En[(yi−x′

iβ̂)
2]
≥

√
En[x2

ijǫ
2
i ]−

√
En[x2

ij{x′
i(β̂−β0)}2]/σ−

√
En[x2

ijr
2
i ]/σ√

En[ǫ2i ]+‖β̂−β0‖2,n/σ+
√

En[r2i ]/σ

≥
√

En[x2
ijǫ

2
i ]−x∞j(‖β̂−β0‖2,n+cs)/σ√

En[ǫ2i ]+(‖β̂−β0‖2,n+cs)/σ
.

Since γ̂j,k ≥ 1, it suffices to consider the case that En[ǫ
2
i ] ≤ En[x

2
ijǫ

2
i ]. There-

fore we have that

(1 +∆)γj ≥
√

En[x2ijǫ
2
i ]/
√

En[ǫ2i ]

is implied by

(C.2) ∆ ≥ 2(‖β̂ − β0‖2,n + cs)x∞j/{σ
√

En[ǫ2i ]}.
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The choice of ∆ =
√
1 + un − 1 is appropriate under the extra condition

assumed in the theorem and by Theorem 1 to bound ‖β̂ − β0‖2,n. Thus,
λ/n ≥ c‖Γ̂−1

k S̃‖∞ for k = 1.
Next we establish an upper bound on γ̂j,k.

γ̂j,k = 1 ∨
√

En[x2
ij(yi−x′

iβ̂)
2]

√
En[(yi−x′

iβ̂)
2]
≤

√
En[x2

ijǫ
2
i ]+

√
En[x2

ij{x′
i(β̂−β0)}2]/σ+

√
En[x2

ijr
2
i ]/σ√

En[ǫ2i ]−‖β̂−β0‖2,n/σ−
√

En[r2i ]/σ

≤
√

En[x2
ijǫ

2
i ]+x∞j(‖β̂−β0‖2,n+cs)/σ√

En[ǫ2i ]−(‖β̂−β0‖2,n+cs)/σ
.

Under the conditions that max1≤i≤n ‖xi‖∞(‖β̂−β0‖2,n+cs)/σ ≤ un
√

En[ǫ2i ]/2,

we have

γ̂j,k ≤ 1∨

√
En[x2ijǫ

2
i ] + un

√
En[ǫ2i ]/2√

En[ǫ2i ]− un
√

En[ǫ2i ]/2
≤ 1∨1 + un/2

1− un/2

√
En[x2ijǫ

2
i ]√

En[ǫ2i ]
≤ (1 + un/2)

2

1− un/2
γ̂j,0.

Let Γ∗ = diag(γ∗1 , . . . , γ
∗
p) where γ∗j = 1 ∨

√
En[x2ijǫ

2
i ]/
√

En[ǫ2i ], and re-

call that (2 + un)/(2 − un) ≤ 2 since un ≤ 2/3. We have that ̺c̄(Γ̂k) ≤
̺c̄‖Γ̂kΓ∗−1‖∞(Γ∗) ≤ ̺2c̄(Γ∗).

Also, letting δ̃ = Γ∗−1Γ̂kδ, note that

κ̄(Γ̂k) = min‖Γ̂kδTc‖1<‖Γ̂kδT ‖1

√
s‖δ‖2,n

‖Γ̂kδT ‖1−‖Γ̂kδTc‖1
= min‖Γ∗δ̃Tc‖1<‖Γ∗δ̃T ‖1

√
s‖Γ̂−1

k Γ∗δ̃‖2,n
‖Γδ̃T ‖1−‖Γ∗ δ̃Tc‖1

≥ κ̄(Γ∗)/‖(Γ̂−1
k Γ∗)−1‖∞.

Thus by Theorem 1 we have that the estimator with β̂ based on Γ̂k, k = 1,
also satisfies (C.2) by the extra condition assumed in the theorem. Thus the
same argument established k > 1.

APPENDIX D: PROOFS OF SECTION 4.6

Proof of Theorem 9. Note that because σ = 0 and cs = 0, we have√
Q̂(β0) = 0 and

√
Q̂(β̂) = ‖β̂ − β0‖2,n. Thus, by optimality of β̂ we have

‖β̂ − β0‖2,n +
λ

n
‖Γβ̂‖1 ≤

λ

n
‖Γβ0‖1.

Therefore, ‖Γβ̂‖1 ≤ ‖Γβ0‖1 which implies that δ = β̂−β0 satisfies ‖ΓδT c‖1 ≤
‖ΓδT ‖1. In turn

‖δ‖2,n ≤
λ

n
(‖Γδ̂T ‖1 − ‖Γδ̂T c‖1) ≤

λ
√
s

nκ̄
‖δ‖2,n.
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Since λ
√
s < nκ̄ we have ‖δ‖2,n = 0.

Next the relation 0 =
√
s‖δ‖2,n ≥ κ̄(‖ΓδT ‖1−‖ΓδT c‖1) implies ‖ΓδT ‖1 =

‖ΓδT c‖1 since κ̄ > 0 by our assumptions.
Also, if κ1 > 0, 0 =

√
s‖δ‖2,n ≥ κ1‖ΓδT ‖1 ≥ κ1‖Γδ‖1/2. Since Γ > 0, this

shows that δ = 0 and β̂ = β0.

Proof of Theorem 10. If λ/n ≥ c‖Γ−1S̃‖∞, by Theorem 1, for ρ̄ =
λ
√
s/[nκ̄] < 1 we have

‖β̂ − β0‖2,n ≤ 2

√
Q̂(β0)

̺c̄ + ρ̄

1− ρ̄2 ,

and the stated bound on the prediction norm follows by

√
Q̂(β0) ≤ cs +

σ
√

En[ǫ2i ].

Thus we need to show that the choice of λ and Γ is suitable for the desired
probability on the event λ/n ≥ c‖Γ−1S̃‖∞. By the choice of un it suffices to
show that

P

(
max
1≤j≤p

√
n|En[(σǫi + ri)xij ]|

max1≤i≤n |xij |
√
En[(σǫi)2]

> 1 +
√
2 log(2p/α)

)
≤ α+ o(1).

By Lemma 6 we have ‖En[rixi]‖∞ ≤ σ/
√
n. Since max1≤i≤n |xij| ≥ En[x

2
ij] =

1, and P (En[ǫ
2
i ] ≤ 1) ≤ η it suffices to establish that

P

(
max
1≤j≤p

√
n|En[ǫixij ]|

max1≤i≤n |xij |
√
En[ǫ2i ]

>
√
2 log(2p/α)

)
≤ α.

This follows since

P


 max

1≤j≤p

√
n|En[ǫixij ]|

max
1≤i≤n

|xij |
√

En[ǫ2i ]
>

√
2 log(2p/α)


 ≤ P


 max

1≤j≤p

√
n|En[ǫixij ]|√
En[x2

ijǫ
2

i ]
>

√
2 log(2p/α)




≤ p max
1≤j≤p

P




√
n|En[ǫixij ]|√
En[x2

ijǫ
2

i ]
>

√
2 log(2p/α)


 ≤ α

where we used the union bound and Theorem 2.15 of [10] because ǫi’s are
independent and symmetric.
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Supplementary Material for the paper “Pivotal
Estimation of Nonparametric Functions via

Square-root Lasso”

APPENDIX B: OMITTED PROOFS

Proof of Lemma 4. In this step we show that δ̂ = β̂ − β0 ∈ ∆c̄ under
the prescribed penalty level. By definition of β̂

(B.1)

√
Q̂(β̂)−

√
Q̂(β0) ≤

λ

n
‖Γβ0‖1 −

λ

n
‖Γβ̂‖1 ≤

λ

n
(‖Γδ̂T ‖1 − ‖Γδ̂T c‖1),

where the last inequality holds because

(B.2)
‖Γβ0‖1 − ‖Γβ̂‖1 = ‖Γβ0T ‖1 − ‖Γβ̂T ‖1 − ‖Γβ̂T c‖1

≤ ‖Γδ̂T ‖1 − ‖Γδ̂T c‖1.

Note that using the convexity of

√
Q̂, −S̃ ∈ ∂

√
Q̂(β0), and if λ/n ≥

cn‖Γ−1S̃‖∞, we have

√
Q̂(β̂)−

√
Q̂(β0) ≥ −S̃′δ̂ ≥ −‖Γ−1S̃‖∞‖Γδ̂‖1(B.3)

≥ − λ

cn
(‖Γδ̂T ‖1 + ‖Γδ̂T c‖1)(B.4)

≥ − λ

cn
(‖Γβ0‖1 + ‖Γβ̂‖1).(B.5)

Combining (B.1) with (B.4) we obtain

(B.6) − λ

cn
(‖Γδ̂T ‖1 + ‖Γδ̂T c‖1) ≤

λ

n
(‖Γδ̂T ‖1 − ‖Γδ̂T c‖1),

that is

(B.7) ‖Γδ̂T c‖1 6
c+ 1

c− 1
· ‖Γδ̂T ‖1 = c̄‖Γδ̂T ‖1, or δ̂ ∈ ∆c̄.

On the other hand, by (B.5) and (B.1) we have

(B.8) − λ

cn
(‖Γβ0‖1 + ‖Γβ̂‖1)+ ≤

λ

n
(‖Γβ0‖1 − ‖Γβ̂‖1).

which similarly leads to ‖Γβ̂‖1 ≤ c̄‖Γβ0‖1.
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Proof of Theorem 2. Let δ := β̂−β0. Under the condition on λ above,
we have that δ ∈ ∆c̄. Thus, we have

‖Γδ‖1 ≤ (1 + c̄)‖ΓδT ‖1 ≤ (1 + c̄)

√
s‖δ‖2,n
κc̄

,

by the restricted eigenvalue condition. The result follows by Theorem 1 to
bound ‖δ‖2,n.

Proof of Theorem 3. Let δ := β̂ − β0. We have that

‖Γ−1δ‖∞ ≤ ‖Γ−1
En[xix

′
iδ]‖∞ + ‖Γ−1(En[xix

′
iδ]− δ)‖∞.

Note that by the first-order optimality conditions of β̂ and the assumption
on λ

‖Γ−1En[xix
′
iδ]‖∞ ≤ ‖Γ−1En[xi(yi − x′iβ̂)]‖∞ + ‖Γ−1S̃‖∞

√
Q̂(β0)

≤ λ
√

Q̂(β̂)
n +

λ
√

Q̂(β0)
cn

by the first-order conditions and the condition on λ.
Next let ej denote the jth-canonical direction.

‖Γ−1En[xix
′
i − I]δ‖∞ = ‖Γ−1En[xix

′
i − I]Γ−1Γδ‖∞

≤ ‖Γ−1En[xix
′
i − I]Γ−1‖∞‖Γδ‖1.

Therefore, using the optimality of β̂ that implies

√
Q̂(β̂) ≤

√
Q̂(β0) +

(λ/n)(‖ΓδT ‖1 − ‖ΓδT c‖1) ≤
√
Q̂(β0) + (λ

√
s/[nκ̄])‖δ‖2,n, we have

‖Γ−1δ‖∞ ≤
(√

Q̂(β̂) +

√
Q̂(β0)
c

)
λ
n + ‖Γ−1En[xix

′
i − I]Γ−1‖∞‖Γδ‖1

≤
(
1 + 1

c

) λ
√

Q̂(β0)
n + λ2√s

n2κ̄
‖δ‖2,n + ‖Γ−1En[xix

′
i − I]Γ−1‖∞‖Γδ‖1.

The result follows from Theorem 1 and 2.

Proof of Lemma 5. Recall that Γ = diag(γ1, . . . , γp). First note that
by strong duality

En [yiâi] =
‖Y −Xβ̂‖√

n
+
λ

n

p∑

j=1

γj |β̂j |.
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Since En [xij âi] β̂j = λγj |β̂j |/n for every j = 1, . . . , p, we have

En [yiâi] =
‖Y −Xβ̂‖√

n
+

p∑

j=1

En [xij âi] β̂j =
‖Y −Xβ̂‖√

n
+ En


âi

p∑

j=1

xij β̂j


 .

Rearranging the terms we have En

[
(yi − x′iβ̂)âi

]
= ‖Y −Xβ̂‖/√n.

If ‖Y −Xβ̂‖ = 0, we have

√
Q̂(β̂) = 0 and the statement of the lemma

trivially holds.
If ‖Y − Xβ̂‖ > 0, since ‖â‖ ≤ √n the equality can only hold for â =

√
n(Y −Xβ̂)/‖Y −Xβ̂‖ = (Y −Xβ̂)/

√
Q̂(β̂).

Next, note that for any j ∈ T̂ we have En [xij âi] = sign(β̂j)λγj/n. There-
fore, we have

√
Q̂(β̂)

√
|T̂ |λ = ‖Γ−1(X′(Y − Xβ̂))

T̂
‖

≤ ‖Γ−1(X′(Y − Xβ0))T̂ ‖ + ‖Γ−1(X′X(β0 − β̂))
T̂
‖

≤
√

|T̂ | n‖Γ−1
En[xi(σǫi + ri)]‖∞ + n

√
φmax(m̂,Γ−1En[xix

′
i]Γ

−1)‖β̂ − β0‖2,n
=

√
|T̂ | n

√
Q̂(β0)‖Γ−1S̃‖∞ + n

√
φmax(m̂,Γ−1En[xix

′
i
]Γ−1)‖β̂ − β0‖2,n,

where we used

‖Γ−1(X ′X(β̂ − β0))T̂ ‖ ≤ sup‖αTc‖0≤m̂,‖α‖≤1 |α′Γ−1X ′X(β̂ − β0))|
≤ sup‖αTc‖0≤m̂,‖α‖≤1 ‖α′Γ−1X ′‖‖X(β̂ − β0)‖
= n

√
φmax(m̂,Γ−1En[xix′i]Γ

−1)‖β̂ − β0‖2,n.

Proof of Corollary 4. We need to bound the probability of relevant
events to establish the prediction norm bound by Theorem 10.

Applying Lemma 10(ii) with a = 1/ log n we have η = 1
n1/2(1/6−1/ logn)2

=

36 log2 n
n1/2(logn−6)2

.

Applying Lemma 10(iii) with tn = 4n/τ , a = 1/ log n, and an = un/[1 +
un], where we note the simplification that

4σ2c2s log tn
n(c2s + anσ2a log n)2

≤ 2 log tn
nana log n

.

we have

P

(√
En[σ2ǫ2i ] ≤ (1 + un)

√
En[(σǫi + ri)2]

)
≤ γ :=

2 log(4n/τ)

nun/[1 + un]
+ η +

τ

2
.
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Thus, by Theorem 10, since ρ̄ < 1, with probability at least 1− α− γ − η
we have

‖β̂−β0‖2,n ≤
2(1 + 1/c)

1− ρ̄2
√
Q̂(β0)(̺c̄+ρ̄) ≤

2(1 + 1/c)

1− ρ̄2 (cs+σ
√

En[ǫ2i ])(̺c̄+ρ̄).

Finally, by Lemma 10(i) we have En[ǫ
2
i ] ≤ 2

√
2/τ + log(4n/τ) with prob-

ability at least 1− τ/2.

APPENDIX C: TECHNICAL LEMMAS

Lemma 6. Under Condition ASM we have

‖En[xiri]‖∞ ≤ min

{
σ√
n
, cs

}
.

Proof. First note that for every j = 1, . . . , p, we have |En[xijri]| ≤√
En[x2ij ]En[r2i ] = cs. Next, by definition of β0 in (2.2), for j ∈ T we have

En[xij(fi − x′iβ0)] = En[xijri] = 0 since β0 is a minimizer over the support
of β0. For j ∈ T c we have that for any t ∈ IR

En[(fi − x′iβ0)2] + σ2
s

n
≤ En[(fi − x′iβ0 − txij)2] + σ2

s+ 1

n
.

Therefore, for any t ∈ IR we have

−σ2/n ≤ En[(fi−x′iβ0−txij)2]−En[(fi−x′iβ0)2] = −2tEn[xij(fi−x′iβ0)]+t2En[x
2
ij ].

Taking the minimum over t in the right hand side at t∗ = En[xij(fi −
x′iβ0)] we obtain −σ2/n ≤ −(En[xij(fi−x′iβ0)])2 or equivalently, |En[xij(fi−
x′iβ0)]| ≤ σ/

√
n.

Lemma 7. Let r1, . . . , rn be fixed and assume ǫi are independent zero
mean random variables such that Ē[ǫ2i ] = 1. Suppose that there is q > 2 such
that Ē[|ǫi|q] <∞. Then, for un > 0 we have

P

(√
En[σ2ǫ2i ] >

√
1 + un

√
En[(σǫi + ri)2]

)
≤ min

v∈(0,1)
ψ(v) +

2(1 + un) max
1≤i≤n

E[ǫ2i ]

un(1− v) n
,

where ψ(v) :=
CqĒ[|ǫi|q∨4]

vqnq/4 ∧ 2Ē[|ǫi|q]
n1∧(q/2−1)vq/2

. Further we have max1≤i≤n E[ǫ
2
i ] ≤

n2/q(Ē[|ǫi|q])2/q .

Proof. Let cs = (En[r
2
i ])

1/2 and an = 1 − [1/(1 + un)] = un/(1 + un).
We have that
(C.1)
P (En[σ

2ǫ2i ] > (1 + un)En[(σǫi + ri)
2]) = P (2En[ǫiri] < −c2s − anEn[σ

2ǫ2i ]).
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By Lemma 8 we have

Pr(
√

En[ǫ
2
i ] < 1− v) ≤ Pr(|En[ǫ

2
i ]− 1| > v) ≤ ψ(v).

Thus,

P (En[σ
2ǫ2i ] > (1+un)En[(σǫi+ri)

2]) ≤ ψ(v)+P (2En[σǫiri] < −c2s−anσ2(1−v)).

Since ǫi’s are independent of ri’s, we have

E[(2En[σǫiri])
2] = 4σ2Ē[ǫ2i r

2
i ]/n ≤

4σ2

n

{
max
1≤i≤n

E[ǫ2i ]c
2
s, max

1≤i≤n
r2i

}
.

By Chebyshev inequality we have

P

(√
En[σ2ǫ2i ] >

√
1 + un

√
En[(σǫi + ri)2]

)
≤ ψ(v) +

4σ2c2s max
1≤i≤n

E[ǫ2i ]/n

(c2s + anσ2(1− v))2

≤ ψ(v) +
2(1+un) max

1≤i≤n
E[ǫ2i ]

(1−v)unn
.

The result follows by minimizing over v ∈ (0, 1).
Further, we have

max
1≤i≤n

E[ǫ2i ] ≤ E[ max
1≤i≤n

ǫ2i ] ≤ (E[ max
1≤i≤n

|ǫqi |])2/q ≤ n2/q(Ē[|ǫqi |])2/q.

Lemma 8. Let ǫi, i = 1, . . . , n, be independent random variables such
that Ē[ǫ2i ] = 1. Assume that there is q > 2 such that Ē[|ǫi|q] < ∞. Then
there is a constant Cq, that depends on q only, such that for v > 0 we have

Pr(|En[ǫ
2
i ]− 1| > v) ≤ ψ(v) := CqĒ[|ǫi|q∨4]

vqnq/4
∧ 2Ē[|ǫi|q]
n1∧(q/2−1)vq/2

.

Proof. By the application of either Rosenthal’s inequality [24] for the
case of q > 4 or Vonbahr-Esseen’s inequalities [32] for the case of 2 < q ≤ 4,

P (|En[ǫ
2
i ]− 1| > v) ≤ ψ(v) := CqĒ[|ǫi|q∨4]

vqnq/4
∧ 2Ē[|ǫi|q]
n1∧(q/2−1)vq/2

.
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Lemma 9. Let ǫi, i = 1, . . . , n, be independent random variables such
that Ē[|ǫi|q] <∞ for q ≥ 4. Conditional on x1, . . . , xn ∈ IRp, with probability
1− 4τ1 − 4τ2

max
1≤j≤p

|En[x
2
ij(ǫ

2
i−E[ǫ2i ])]| ≤ 4

√
2 log(2p/τ1)

n

(
Ē[|ǫi|q]
τ2

) 2
q

max
1≤j≤p

(En[|xij |
4q
q−4 ])

q−4
2q

where in the case q = 4 we have {En[|xij |4q/[q−4]]}[q−4]/q = max1≤i≤n |xij|.

Proof. For a random variable Z, let q̄(Z, 1−α) = (1−α)-quantile of Z.
Let

e1n = 4

√
2 log(2p/τ1)

n

(
Ē[|ǫi|q]
τ2

)2/q

max
1≤j≤p

(En[|xij |4q/[q−4]])[q−4]/[2q],

and note that

q̄( max
1≤j≤p

En[x
4
ijǫ

4
i ], 1− τ) ≤ max

1≤j≤p
{En[|xij |4q/[q−4]]}[q−4]/q{q̄(En[|ǫi|q], 1− τ)}4/q

≤ max
1≤j≤p

{En[|xij |4q/[q−4]]}[q−4]/qĒ[|ǫi|q]/τ2)4/q

since Ē[|ǫi|q] <∞, q̄(En[|ǫi|q], 1 − τ2) ≤ Ē[|ǫi|q]/τ2, and

max
1≤j≤p

q̄(Gn(x
2
ijǫ

2
i ),

1

2
) ≤

√
2Ē[x4ijǫ

4
i ] ≤

√
2 max
1≤j≤p

(En[|xij |
4q

q−4 ])
q−4

2q

(
Ē[|ǫi|q]
τ2

) 2

q

.

Therefore, by Lemma 18, we have

P

(
max
1≤j≤p

|En[x
2
ij(ǫ

2
i − E[ǫ2i ])]| > e1n

)
≤ 4τ1 + 4τ2.

Lemma 10. Consider ǫi ∼ t(2). Then, for τ ∈ (0, 1) we have that:
(i) P (En[ǫ

2
i ] ≥ 2

√
2/τ + log(4n/τ)) ≤ τ/2.

(ii) For 0 < a < 1/6, we have P (En[ǫ
2
i ] ≤ a log n) ≤ 1

n1/2(1/6−a)2
.

(iii) For un ≥ 0 and 0 < a < 1/6, we have

P
(√

En[σ2ǫ2i ] ≤ (1 + un)
√
En[(σǫi + ri)2]

)
≤ 4σ2c2s log(4n/τ)

n(c2s+[un/(1+un)]σ2a logn)2+

+ 1
n1/2(1/6−a)2

+ τ
2 .

Proof of Lemma 10. To show (i) we will establish a bound on q(En[ǫ
2
i ], 1−

τ). Recall that for a t(2) random variable, the cumulative distribution func-
tion and the density function are given by:

F (x) =
1

2

(
1 +

x√
2 + x2

)
and f(x) =

1

(2 + x2)3/2
.
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For any truncation level tn ≥
√
2 we have

(C.2)

E[ǫ2i 1{ǫ2i ≤ tn}] = 2
∫ √

2
0

x2dx
(2+x2)3/2

+ 2
∫ √

tn√
2

x2dx
(2+x2)3/2

≤ 2
∫ √

2
0

x2dx
23/2

+ 2
∫ √

tn√
2

x2dx
x3

≤ log tn.

E[ǫ4i 1{ǫ2i ≤ tn}] ≤ 2
∫ √

2
0

x4dx
23/2

+ 2
∫ √

tn√
2

x4dx
x3 ≤ tn.

E[ǫ2i 1{ǫ2i ≤ tn}] ≥ 2
∫ 1
0

x2dx
33/2

+ 2
∫ √

2
1

x2dx
43/2

+ 2
2
√
2

∫ √
tn√
2

dx
x

≥ log tn
2
√
2
.

Also, because 1−
√
1− v ≤ v for every 0 ≤ v ≤ 1,

(C.3) P (|ǫi|2 > tn) =

(
1−

√
tn

2 + tn

)
≤ 2/(2 + tn).

Thus, by setting tn = 4n/τ and t = 2
√
2/τ we have [12], relation (7.5),

(C.4)
P (|En[ǫ

2
i ]− E[ǫ2i 1{ǫ2i ≤ tn}]| ≥ t) ≤

E[ǫ4i 1{ǫ2i≤tn}]
nt2

+ nP (|ǫ2i | > tn)
≤ tn

nt2 + 2n
2+tn

≤ τ/2.

Thus, (i) is established.
To show (ii), for 0 < a < 1/6, we have

(C.5)
P (En[ǫ

2
i ] ≤ a logn) ≤ P (En[ǫ

2
i 1{ǫ2i ≤ n1/2}] ≤ a logn)

≤ P (|En[ǫ
2
i 1{ǫ2i ≤ n1/2}]− E[ǫ2i 1{ǫ2i ≤ n1/2}]| ≥ (16 − a) logn)

≤ 1
n1/2(1/6−a)2

by Chebyshev inequality and since E[ǫ2i 1{ǫ2i ≤ n1/2}] ≥ (1/6) log n.
To show (iii), let an = [(1+un)

2− 1]/(1 +un)
2 = un(2+un)/(1+un)

2 ≥
un/(1 + un) and note that by (C.2), (C.4), and (C.5) we have

P
(√

En[σ2ǫ2i ] > (1 + un)
√

En[(σǫi + ri)2]
)
= P (2σEn[ǫiri] > c2s + anEn[σ

2ǫ2i ])

≤ P (2σEn[ǫiri1{ǫ2i ≤ tn}] > c2s + anσ
2a logn) + P (En[ǫ

2
i ] ≤ a logn) + nP (ǫ2i ≤ tn)

≤ 4σ2c2s log tn
n(c2s+anσ2a logn)2 + 1

n1/2(1/6−a)2
+ τ/2.

APPENDIX D: LEMMAS FOR PROJECTION ESTIMATORS

Lemma 11. Consider the oracle approximation error and the optimal
cardinality as

c2k = min
‖β‖0≤k

En[(fi−x′iβ)2] and s ∈ argmin
k
{c2k+σ2k/n : k ≥ 0, k integer}.
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If the approximation error satisfies c2k ≤ Ck−2α for every k ≥ 0, then

s ≤ 1 + n1/[1+2α] 1

σ2

(
2αC

σ2

)−2α/[1+2α]

.

Proof. Let s̃ = argmink≥0Ck
−2α+σ2k/n, so that s̃ =

(
2αC
σ2

) 1
1+2α n

1
1+2α

which might not be an integer.
By definition of s we have

c2s + σ2s/n ≤ c2⌈s̃⌉ + σ2 ⌈s̃⌉ /n ≤ Cs̃−2α + σ2s̃/n+ σ2/n.

Therefore, we have

s ≤ 1 + (n/σ2)(2αC/σ2)−2α/[1+2α]n−2α/[1+2α]

= 1 + n1/[1+2α](1/σ2)(2αC/σ2)−2α/[1+2α].

Lemma 12. Consider the nonparametric model (2.1) where f : [0, 1] →
R belongs to the Sobolev class W (α,L), and zi ∼ Uniform(0, 1), i = 1, . . . , n.
Given a bounded orthonormal basis {Pj(·)}∞j=1, the coefficients of the pro-
jection estimator satisfy for any k ≥ 1

E[‖θ̂(k) − θ‖2|z1, . . . , zn] .Pz k
−α +

√
k

n

where θ̂(k) = (θ̂1, . . . , θ̂k, 0, 0, 0, . . .).

Proof. Let Z = [z1, . . . , zn] and recall that yi = f(zi) + σǫi, E[ǫi] = 0,
E[ǫ2i ] = 1. Essentially by Proposition 1.16 of [26] we have E[θ̂j|Z] = θj + γj ,

where γj = En[f(zi)Pj(zi)]− θj , and E[(θ̂j − θj)2|Z] = En[Pj(zi)
2]σ2/n+γ2j .

Since f(z) =
∑

m≥1 θmPm(z) for any z ∈ [0, 1], we have for 1 ≤ j ≤ k ≤ k̄

γj =
∑∞

m=1 θmEn[Pm(zi)Pj(zi)]− θj

= θj(En[P
2
j (zi)]− 1) +

k̄∑

m=1,m 6=j

θmEn[Pm(zi)Pj(zi)]+

+
∑

m≥k̄+1 θmEn[Pm(zi)Pj(zi)].

Next, note that θ satisfies
∑∞

m=1 a
2
mθ

2
m ≤ L, we have

(D.1)

∑k̄
m=1 |θm| ≤ (

∑k̄
m=1 a

2
mθ

2
m)1/2(

∑k̄
m=1 a

−2
m )1/2 ≤ CβL

1/2,∑∞
m=k̄ |θm| ≤ (

∑∞
m=1 a

2
mθ

2
m)1/2(

∑∞
m=k̄ a

−2
m )1/2 ≤ CβL

1/2k̄−α+1/2.
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For convenience define M = {1, . . . , k̄} so that

k∑

j=1

γ2j .

k∑

j=1

(En[θ
′
MPM (zi)Pj(zi)]−θj)2+

k∑

j=1

∑

m≥k̄+1

|θm| .Pz

k

n
+kk̄−α+1/2.

Indeed, note that since the basis is bounded and (D.1) holds, we have
|θ′MPM (zi)Pj(zi)−θj| . ‖θM‖1 . 1, and thus Zj := En[θ

′
MPM (zi)Pj(zi)−θj]

satisfies EZ [Zj] = 0 and EZ [Z
2
j ] . 1/n. Hence, by Markov inequality we have

k∑

j=1

Z2
j .Pz

k

n
.

For some constant V > 0, setting k =
⌊
V n1/[2α+1]

⌋
, k̄ = n, we have

k∑

j=1

En[Pj(zi)
2]
σ2

n
. max

1≤j≤k
En[Pj(zi)

2]
σ2k

n
. σ2n−1+1/[2α+1] . n−2α/[2α+1],

∑∞
m=k+1 θ

2
j . k−2α . n−2α/[2α+1],∑k

m=1 γ
2
m .Pz

k
n + kn−2α+1 . n−2α/[2α+1]

where we used the fact that the basis is bounded, max1≤j≤k En[Pj(zi)
2] . 1,

and kn−2α+1 ≤ k/n for α ≥ 1. Finally,

E[‖θ̂(k) − θ‖2|Z] .
∑k

j=1En[Pj(zi)
2]σ

2

n +
∑k

m=1 γ
2
m +

∑
m≥k+1 θ

2
m

.Pz
k
n + k−2α

by the relations above. The result follows by Jensen’s inequality.

APPENDIX E: EMPIRICAL PERFORMANCE OF
√
LASSO

E.1. Estimation performance of
√

lasso, homoskedastic. In this
section we use Monte carlo experiments to assess the finite-sample perfor-
mance of the following estimators:

• the (infeasible) lasso, which knows σ (which is unknown outside the
experiments),

• ols post lasso, which applies ols to the model selected by (infeasible)
lasso,

•
√
lasso, which does not know σ, and

• ols post
√
lasso, which applies ols to the model selected by

√
lasso.
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In the homoskedastic case there is no need to estimate the loadings so we set
γ̂j = 1 for all j = 1, . . . , p. We set the penalty level for lasso as the standard
choice in the literature, λ = c2σ

√
nΦ−1(1 − α/2p), and

√
lasso according

to λ = c
√
nΦ−1(1 − α/2p), both with 1 − α = .95 and c = 1.1 to both

estimators.
We use the linear regression model stated in the introduction as a data-

generating process, with either standard normal or t(4) errors:

(a) ǫi ∼ N(0, 1) or (b) ǫi ∼ t(4)/
√
2,

so that E[ǫ2i ] = 1 in either case. We set the regression function as

(E.1) f(xi) = x′iβ
∗
0 , where β∗0j = 1/j3/2, j = 1, . . . , p.

The scaling parameter σ vary between 0.25 and 5. For the fixed design, as
the scaling parameter σ increases, the number of non-zero components in the
oracle vector s decreases. The number of regressors p = 500, the sample size
n = 100, and we used 100 simulations for each design. We generate regressors
as xi ∼ N(0,Σ) with the Toeplitz correlation matrix Σjk = (1/2)|j−k|.
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Fig 1. The average empirical risk of the estimators as a function of the scaling parameter
σ.

We present the results of computational experiments for designs a) and
b) in Figures 1, 2, 3. The left plot of each figure reports the results for
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Fig 2. The norm of the bias of the estimators as a function of the scaling parameter σ.
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Fig 3. The average number of regressors selected as a function of the scaling parameter
σ.

the normal errors, and the right plot of each figure reports the results for
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t(4) errors. For each model, the figures show the following quantities as a
function of scaling parameter σ for each estimator β̃:

• Figure 1 – the average empirical risk, E[‖β̃ − β0‖2,n],
• Figure 2 – the norm of the bias, ‖E[β̃ − β0]‖, and
• Figure 3 – the average number of regressors selected, E[|support(β̃)|].
Figure 1, left panel, shows the empirical risk for the Gaussian case. We see

that, for a wide range of the scaling parameter σ, lasso and
√
lasso perform

similarly in terms of empirical risk, although standard lasso outperforms
somewhat

√
lasso. At the same time, ols post lasso outperforms slightly ols

post
√
lasso for larger signal strengths. This is expected since

√
lasso over

regularize to simultaneously estimate σ when compared to lasso (since it

essentially uses

√
Q̂(β̂) as an estimate of σ). In the nonparametric model

considered here, the coefficients are not well separated from zero. These two
issues combined leads to a smaller selected support.

Overall, the empirical performance of
√
lasso and ols post

√
lasso achieve

its goal. Despite not knowing σ,
√
lasso performs comparably to the standard

lasso that knows σ. These results are in close agreement with our theoretical
results, which state that the upper bounds on empirical risk for

√
lasso

asymptotically approach the analogous bounds for standard lasso.
Figures 2 and 3 provide additional insight into the performance of the

estimators. On the one hand, Figure 2 shows that the finite-sample differ-
ences in empirical risk for lasso and

√
lasso arise primarily due to

√
lasso

having a larger bias than standard lasso. This bias arises because
√
lasso

uses an effectively heavier penalty. Figure 3 shows that such heavier penalty
translates into

√
lasso achieving a smaller support than lasso on average.

Finally, Figure 1, right panel, shows the empirical risk for the t(4) case. We
see that the results for the Gaussian case carry over to the t(4) case. In fact,
the performance of lasso and

√
lasso under t(4) errors nearly coincides with

their performance under Gaussian errors. This is exactly what is predicted
by our theoretical results.

E.2. Estimation performance of
√

lasso, heteroskedastic. In this
section we use Monte carlo experiments to assess the finite-sample perfor-
mance under heteroskedastic errors of the following estimators:

• the (infeasible) oracle estimator,
• heteroskedastic

√
lasso (as Algorithm 1),

• ols post heteroskedastic
√
lasso, which applies ols to the model selected

by heteroskedastic
√
lasso.
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• the (infeasible) ideal heteroskedastic
√
lasso (which uses exact load-

ings),
• ols post ideal heteroskedastic

√
lasso, which applies ols to the model

selected by ideal heteroskedastic
√
lasso.

We use the linear regression model stated in the introduction as a data-
generating process. We set the regression function as

(E.2) f(xi) = x′iβ
∗
0 , where β∗0j = 1/j2, j = 1, . . . , p.

The error term ǫi is normal with zero mean and variance given by:

σ2i = σ2
|1 + x′iβ

∗
0 |2

En[{1 + x′iβ
∗
0}2

where the scaling parameter σ vary between 0.1 and 1. For the fixed design,
as the scaling parameter σ increases, the number of non-zero components
in the oracle vector s decreases. The number of regressors p = 200, the
sample size n = 200, and we used 500 simulations for each design. We
generate regressors as xi ∼ N(0,Σ) with the Toeplitz correlation matrix
Σjk = (1/2)|j−k|. We set the penalty level

√
lasso according to the recom-

mended parameters of Algorithm 1.
Figure 4 displays the average sparsity achieve by each estimator and the

average empirical risk. The heteroskedastic
√
lasso exhibits a stronger degree

of regularization. This is reflected by the smaller number of components
selected and the substantially larger empirical risk. Nonetheless, the selected
support seems to achieve good approximation performance since the ols post
heteroskedastic

√
lasso performs very close to its ideal counterpart and to

the oracle.

APPENDIX F: COMPARING COMPUTATIONAL METHODS FOR
LASSO AND

√
LASSO

Next we proceed to evaluate the computational burden of
√
lasso relative

to lasso, from computational and theoretical perspective.

F.1. Computational performance of
√

lasso relative to lasso. Since
model selection is particularly relevant in high-dimensional problems, the
computational tractability of the optimization problem associated with

√
lasso

is an important issue. It will follow that the optimization problem associated
with

√
lasso can be cast as a tractable conic programming problem. Conic

programming consists of the following optimization problem

minx c(x)
A(x) = b
x ∈ K
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Fig 4. For each estimator the top figure displays the corresponding sparsity and the bot-
tom figure displays the empirical risk as a function of the scaling parameter σ. The solid
line corresponds to the oracle estimator, the dotted line corresponds to the heteroskedastic√
lasso, the dashed-dot line corresponds to the ideal heteroskedastic

√
lasso. The dotted line

with circles corresponds to ols post heteroskedastic
√
lasso and the dashed-dotted line with

circles corresponds to ols post ideal heteroskedastic
√
lasso.

where K is a cone, c is a linear functional, A is a linear operator, and b is
an element in the counter domain of A. We are particularly interested in
the case where K is also convex. Convex conic programming problems have
greatly extended the scope of applications of linear programming problems3

3The relevant cone in linear programs is the non-negative orthant, minw{c′w : Aw =
b, w ∈ IRk

+}.
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in several fields including optimal control, learning theory, eigenvalue op-
timization, combinatorial optimization and others. Under mild regularities
conditions, duality theory for conic programs has been fully developed and
allows for characterization of optimal conditions via dual variables, much
like linear programming problems.

In the past two decades, the study of the computational complexity and
the developments of efficient computational algorithms for conic program-
ming have played a central role in the optimization community. In partic-
ular, for the case of self-dual cones, which encompasses the non-negative
orthant, second-order cones, and the cone of semi-definite positive matri-
ces, interior-point methods have been highly specialize. A sound theoretical
foundation, establishing polynomial computational complexity [21, 22], and
efficient software implementations [27] made large instances of these prob-
lems computational tractable. More recently, first-order methods have also
been propose to approximately solve even larger instances of structured conic
problem [19, 20, 17].

It follows that (2.3) can be written as a conic programming problem whose
relevant cone is self-dual. LettingQn+1 := {(t, v) ∈ IR×IRn : t ≥ ‖v‖} denote
the second order cone in IRn+1, we can recast (2.3) as the following conic
program:

(F.1)

min
t,v,β+,β−

t√
n
+
λ

n

p∑

i=1

(
γjβ

+
j + γjβ

−
j

)

vi = yi − x′iβ+ + x′iβ
−, i = 1, . . . , n

(t, v) ∈ Qn+1, β+ ≥ 0, β− ≥ 0.

Conic duality immediately yields the following dual problem

(F.2)

max
a∈IRn

En [yiai]

|En [xijai]| ≤ λγj/n, j = 1, . . . , p
‖a‖ ≤

√
n.

From a statistical perspective, the dual variables represent the normalized
residuals. Thus the dual problem maximizes the correlation of the dual vari-
able a subject to the constraint that a are approximately uncorrelated with
the regressors. It follows that these dual variables play a role in deriving
necessary conditions for a component β̂j to be non-zero and therefore on
sparsity bounds.

The fact that
√
lasso can be formulated as a convex conic programming

problem allows the use of several computational methods tailored for conic
problems to compute the

√
lasso estimator. In this section we compare three
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n = 100, p = 500 Componentwise First-order Interior-point

lasso 0.2173 10.99 2.545√
lasso 0.3268 7.345 1.645

n = 200, p = 1000 Componentwise First-order Interior-point

lasso 0.6115 19.84 14.20√
lasso 0.6448 19.96 8.291

n = 400, p = 2000 Componentwise First-order Interior-point

lasso 2.625 84.12 108.9√
lasso 2.687 77.65 62.86

Table 1

In these instances we had s = 5, σ = 1, and each value was computed by averaging 100
simulations.

different methods to compute
√
lasso with their counterparts to compute

lasso. We note that these methods have different initialization and stopping
criterion that could impact the running times significantly. Therefore we do
not aim to compare different methods but instead we focus on the compar-
ison of the performance of each method to lasso and

√
lasso since the same

initialization and stopping criterion are used.
Table F.1 illustrates that the average computational time to solve lasso

and
√
lasso optimization problems are comparable. Table F.1 also reinforces

typical behavior of these methods. As the size increases, the running time
for interior-point method grows faster than other first-order method. Simple
componentwise method is particular effective when the solution is highly
sparse. This is the case of the parametric design considered in these ex-
periments. We emphasize the performance of each method depends on the
particular design and choice of λ.

F.2. discussion of Implementation Details. Below we discuss in
more detail the applications of these methods for lasso and

√
lasso. For

each method, the similarities between the lasso and
√
lasso formulations

derived below provide theoretical justification for the similar computational
performance. In what follows we were given data {Y = [y1, . . . , yn]

′,X =
[x1, . . . , xn]

′} and penalty {λ,Γ = diag(γ1, . . . , γp)}.
Interior-point methods. Interior-point methods (IPMs) solvers typi-

cally focus on solving conic programming problems in standard form,

(F.3) min
w
c′w : Aw = b, w ∈ K.

The main difficulty of the problem arises because the conic constraint will
be biding at the optimal solution.
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IPMs regularize the objective function of the optimization with a barrier
function so that the optimal solution of the regularized problem naturally
lies in the interior of the cone. By steadily scaling down the barrier function,
a IPM creates a sequence of solutions that converges to the solution of the
original problem (F.3).

In order to formulate the optimization problem associated with the lasso
estimator as a conic programming problem (F.3), we let β = β+ − β−, and
note that for any vector v ∈ IRn and any scalar t ≥ 0 we have that

v′v ≤ t is equivalent to ‖(v, (t − 1)/2)‖2 ≤ (t+ 1)/2.

Thus, we have that lasso optimization problem can be cast

min
t,β+,β−,a1,a2,v

t

n
+
λ

n

p∑

j=1

γjβ
+
j + γjβ

−
j

v = Y −Xβ+ +Xβ−

t = −1 + 2a1
t = 1 + 2a2
(v, a2, a1) ∈ Qn+2, t ≥ 0, β+ ∈ IRp

+, β
− ∈ IRp

+.

The
√
lasso optimization problem can be cast by similarly but without aux-

iliary variables a1, a2:

min
t,β+,β−,v

t√
n
+
λ

n

p∑

j=1

γjβ
+
j + β−j

v = Y −Xβ+ +Xβ−

(v, t) ∈ Qn+1, β+ ∈ IRp
+, β

− ∈ IRp
+.

First-order methods. The new generation of first-order methods focus
on structured convex problems that can be cast as

min
w
f(A(w) + b) + h(w) or min

w
h(w) : A(w) + b ∈ K.

where f is a smooth function and h is a structured function that is pos-
sibly non-differentiable or with extended values. However it allows for an
efficient proximal function to be solved, see [1]. By combining projections
and (sub)gradient information these methods construct a sequence of iter-
ates with strong theoretical guarantees. Recently these methods have been
specialized for conic problems which includes lasso and

√
lasso. It is well

known that several different formulations can be made for the same opti-
mization problem and the particular choice can impact the computational
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running times substantially. We focus on simple formulations for lasso and√
lasso.
Lasso is cast as

min
w
f(A(w) + b) + h(w)

where f(·) = ‖·‖2/n, h(·) = (λ/n)‖·‖1, A = X, and b = −Y . The projection
required to be solved on every iteration for a given current point βk is

β(βk) = argmin
β

2En[xi(yi − x′iβk)]′β +
1

2
µ‖β − βk‖2 + λ

n
‖Γβ‖1.

It follows that the minimization in β above is separable and can be solved
by soft-thresholding as

βj(β
k) = sign

(
β+
j

)
max

{∣∣β+
j

∣∣− λγj/[nµ], 0
}

where β+j = βkj + 2En[xij(yi − x′iβk)]/µ.
For
√
lasso the “conic form” is given by

min
w
h(w) : A(w) + b ∈ K.

Letting Qn+1 = {(z, t) ∈ IRn × IR : t ≥ ‖z‖} and h(w) = f(β, t) =
t/
√
n+ (λ/n)‖Γβ‖1 we have that

min
β,t

t√
n
+
λ

n
‖Γβ‖1 : A(β, t) + b ∈ Qn+1

where b = (−Y ′, 0)′ and A(β, t) 7→ (β′X ′, t)′.
In the associated dual problem, the dual variable z ∈ IRn is constrained

to be ‖z‖ ≤ 1/
√
n (the corresponding dual variable associated with t is set

to 1/
√
n to obtain a finite dual value). Thus we obtain

max
‖z‖≤1/

√
n
inf
β

λ

n
‖Γβ‖1 +

1

2
µ‖β − βk‖2 − z′(Y −Xβ).

Given iterates βk, zk, as in the case of lasso that the minimization in β is
separable and can be solved by soft-thresholding as

βj(β
k, zk) = sign

(
βkj + (X ′zk/µ)j

)
max

{∣∣∣βkj + (X ′zk/µ)j
∣∣∣− λγj/[nµ], 0

}
.

The dual projection accounts for the constraint ‖z‖ ≤ 1/
√
n and solves

z(βk, zk) = arg min
‖z‖≤1/

√
n

θk
2tk
‖z − zk‖2 + (Y −Xβk)′z
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which yields

z(βk, zk) =
zk + (tk/θk)(Y −Xβk)
‖zk + (tk/θk)(Y −Xβk)‖

min

{
1√
n
, ‖zk + (tk/θk)(Y −Xβk)‖

}
.

Componentwise Search. A common approach to solve unconstrained
multivariate optimization problems is to (i) pick a component, (ii) fix all
remaining components, (iii) minimize the objective function along the cho-
sen component, and loop steps (i)-(iii) until convergence is achieved. This is
particulary attractive in cases where the minimization over a single compo-
nent can be done very efficiently. Its simple implementation also contributes
for the widespread use of this approach.

Consider the following lasso optimization problem:

min
β∈IRp

En[(yi − x′iβ)2] +
λ

n

p∑

j=1

γj |βj |.

Under standard normalization assumptions En[x
2
ij] = 1 for j = 1, . . . , p.

Below we describe the rule to set optimally the value of βj given fixed the
values of the remaining variables. It is well known that lasso optimization
problem has a closed form solution for minimizing a single component.

For a current point β, let β−j = (β1, β2, . . . , βj−1, 0, βj+1, . . . , βp)
′:

• if 2En[xij(yi − x′iβ−j)] > λγj/n it follows that the optimal choice for
βj is

βj =
(
−2En[xij(yi − x′iβ−j)] + λγj/n

)
/En[x

2
ij];

• if 2En[xij(yi−x′iβ−j)] < −λγj/n it follows that the optimal choice for
βj is

βj =
(
−2En[xij(yi − x′iβ−j)]− λγj/n

)
/En[x

2
ij];

• if 2|En[xij(yi − x′iβ−j)]| ≤ λγj/n we would set βj = 0.

This simple method is particularly attractive when the optimal solution is
sparse which is typically the case of interest under choices of penalty levels
that dominate the noise like λ ≥ cn‖S‖∞.

Despite of the additional square-root, which creates a non-separable crite-
rion function, it turns out that the componentwise minimization for

√
lasso

also has a closed form solution. Consider the following optimization problem:

min
β∈IRp

√
En[(yi − x′iβ)2] +

λ

n

p∑

j=1

γj|βj |.
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As before, under standard normalization assumptions En[x
2
ij ] = 1 for j =

1, . . . , p. Below we describe the rule to set optimally the value of βj given
fixed the values of the remaining variables.

• If En[xij(yi − x′iβ−j)] > (λ/n)γj

√
Q̂(β−j), we have

βj = −
En[xij(yi − x′iβ−j)]

En[x2ij ]
+

λγj
En[x2ij ]

√
Q̂(β−j)− (En[xij(yi − x′iβ−j)]2/En[x2ij ])√

n2 − (λ2γ2j /En[x2ij ])
;

• if En[xij(yi − x′iβ−j)] < −(λ/n)γj
√
Q̂(β−j), we have

βj = −
En[xij(yi − x′iβ−j)]

En[x2ij ]
− λγj
En[x2ij ]

√
Q̂(β−j)− (En[xij(yi − x′iβ−j)]2/En[x2ij ])√

n2 − (λ2γ2j /En[x2ij ])
;

• if |En[xij(yi − x′iβ−j)]| ≤ (λ/n)γj

√
Q̂(β−j), we have βj = 0.

APPENDIX G: PROBABILITY INEQUALITIES

G.1. Moment Inequalities. We begin with Rosenthal and Von Bahr-
Esseen Inequalities.

Lemma 13 (Rosenthal Inequality). Let X1, . . . ,Xn be independent zero-
mean random variables, then for r ≥ 2

E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

r]
≤ C(r)max





n∑

t=1

E[|Xi|r],
(

n∑

t=1

E[X2
i ]

)r/2


 .

Corollary 5 (Rosenthal LLN). Let r ≥ 2, and consider the case of
independent and identically distributed zero-mean variables Xi with E[X2

i ] =
1 and E[|Xi|r] bounded by C. Then for any ℓn > 0

Pr

( |∑n
i=1Xi|
n

> ℓnn
−1/2

)
≤ 2C(r)C

ℓrn
,

where C(r) is a constant depend only on r.

Remark. To verify the corollary, note that by Rosenthal’s inequality we
have E [|∑n

i=1Xi|r] ≤ Cnr/2. By Markov inequality,

P

( |∑n
i=1Xi|
n

> c

)
≤ C(r)Cnr/2

crnr
≤ C(r)C

crnr/2
,

so the corollary follows. We refer [24] for complete proofs.
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Lemma 14 (Vonbahr-Esseen inequality). Let X1, . . . ,Xn be independent
zero-mean random variables. Then for 1 ≤ r ≤ 2

E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

r]
≤ (2− n−1) ·

n∑

k=1

E[|Xk|r].

We refer to [32] for proofs.

Corollary 6 (Vonbahr-Esseen’s LLN). Let r ∈ [1, 2], and consider the
case of identically distributed zero-mean variables Xi with E|Xi|r bounded
by C. Then for any ℓn > 0

Pr

( |∑n
i=1Xi|
n

> ℓnn
−(1−1/r)

)
≤ 2C

ℓrn
.

Remark. By Markov and Vonbahr-Esseen’s inequalities,

Pr

( |
∑n

i=1Xi|
n

> c

)
≤ E [|

∑n
i=1Xi|r]
crnr

≤ (2n − 1)E[|Xi|r]
crnr

≤ 2C

crnr−1
,

which implies the corollary.

G.2. Moderate Deviations for Sums of Independent Random

Variables. Next we consider Slastnikov-Rubin-Sethuraman Moderate De-
viation Theorem.

LetXni, i = 1, . . . , kn;n ≥ 1 be a double sequence of row-wise independent
random variables with E[Xni] = 0, E[X2

ni] < ∞, i = 1, . . . , kn; n ≥ 1, and

B2
n =

∑kn
i=1E[X2

ni]→∞ as n→∞. Let

Fn(x) = Pr

(
kn∑

i=1

Xni < xBn

)
.

Lemma 15 (Slastnikov, Theorem 1.1). If for sufficiently large n and
some positive constant c,

kn∑

i=1

E[|Xni|2+c2 ]ρ(|Xni|) log−(1+c2)/2(3 + |Xni|) ≤ g(Bn)B
2
n,

where ρ(t) is slowly varying function monotonically growing to infinity and
g(t) = o(ρ(t)) as t→∞, then

1− Fn(x) ∼ 1− Φ(x), Fn(−x) ∼ Φ(−x), n→∞,

uniformly in the region 0 ≤ x ≤ c
√

logB2
n
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Corollary 7 (Slastnikov, Rubin-Sethuraman). If q > c2 + 2 and

kn∑

i=1

E[|Xni|q] ≤ KB2
n,

then there is a sequence γn → 1, such that

∣∣∣∣
1− Fn(x) + Fn(−x)

2Φ̄(x)
− 1

∣∣∣∣ ≤ γn − 1→ 0, n→∞,

uniformly in the region 0 ≤ x ≤ c
√

logB2
n

Remark. Rubin-Sethuraman derived the corollary for x = t
√
logB2

n for
fixed t. Slastnikov’s result adds uniformity and relaxes the moment assump-
tion.

We refer to [25] for proofs.

G.3. Moderate Deviations for Self-Normalized Sums. We shall
be using the following result – Theorem 7.4 in [10].

Let X1, . . . ,Xn be independent, mean-zero variables, and

Sn =
n∑

i=1

Xi, V 2
n =

n∑

i=1

X2
i .

For 0 < δ ≤ 1 set

B2
n =

n∑

i=1

EX2
i , Ln,δ =

n∑

i=1

E|Xi|2+δ, dn,δ = Bn/L
1/(2+δ)
n,δ .

Then for uniformly in 0 ≤ x ≤ dn,δ,

Pr(Sn/Vn ≥ x)
Φ̄(x)

= 1 +O(1)

(
1 + x

dn,δ

)2+δ

,

Pr(Sn/Vn ≤ −x)
Φ(−x) = 1 +O(1)

(
1 + x

dn,δ

)2+δ

,

where the terms O(1) are bounded in absolute value by a universal constant
A, and Φ̄ := 1− Φ.

Application of this result gives the following lemma:
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Lemma 16 (Moderate deviations for self-normalized sums). Let X1,n, . . . ,Xn,n

be a triangular array of i.n.i.d, zero-mean random variables. Suppose that

Mn =
( 1n
∑n

i=1 EX
2
i,n)

1/2

( 1n
∑n

i=1 E|Xi,n|3)1/3
> 0

and that for some ℓn →∞

n1/6Mn/ℓn ≥ 1.

Then uniformly on 0 ≤ x ≤ n1/6Mn/ℓn − 1, the quantities

Sn,n =
n∑

i=1

Xi,n, V 2
n,n =

n∑

i=1

X2
i,n.

obey ∣∣∣∣
Pr(|Sn,n/Vn,n| ≥ x)

2Φ̄(x)
− 1

∣∣∣∣ ≤
A

ℓ3n
→ 0.

Proof. This follows by the application of the quoted theorem to the i.i.d.
case with δ = 1 and dn,1 = n1/6Mn. The calculated error bound follows from
the triangular inequalities and conditions on ℓn and Mn.

G.4. Data-dependent Probabilistic Inequality. In this section we
derive a data-dependent probability inequality for empirical processes in-
dexed by a finite class of functions. In what follows, for a random variable X
let q(X, 1−τ) denote its (1−τ)-quantile. For a class of functions F we define
‖X‖F = supf∈F |f(X)|. Also for random variables Z1, . . . , Zn and a function

f define ‖f‖Pn,2 =
√

En[f(Zi)2], Gn(f) = (1/
√
n)
∑n

i=1{f(Zi)− E[f(Zi)]},
and Go

n(f) = (1/
√
n)
∑n

i=1 εif(Zi) where εi are independent Rademacher
random variables.

In order to prove a bound on tail probabilities of a separable empirical
process, we need to go through a symmetrization argument. Since we use a
data-dependent threshold, we need an appropriate extension of the classical
symmetrization lemma to allow for this. Let us call a threshold function
x : IRn 7→ IR k-sub-exchangeable if for any v,w ∈ IRn and any vectors ṽ, w̃
created by the pairwise exchange of the components in v with components
in w, we have that x(ṽ) ∨ x(w̃) ≥ [x(v) ∨ x(w)]/k. Several functions satisfy
this property, in particular x(v) = ‖v‖ with k =

√
2, constant functions

with k = 1, and x(v) = ‖v‖∞ with k = 1. The following result generalizes
the standard symmetrization lemma for probabilities (Lemma 2.3.7 of [31])
to the case of a random threshold x that is sub-exchangeable. The proof of
Lemma 17 can be found in [3].
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Lemma 17 (Symmetrization with data-dependent thresholds). Consider
arbitrary independent stochastic processes Z1, . . . , Zn and arbitrary functions
µ1, . . . , µn : F 7→ IR. Let x(Z) = x(Z1, . . . , Zn) be a k-sub-exchangeable
random variable and for any τ ∈ (0, 1) let qτ denote the τ quantile of x(Z),
p̄τ := P (x(Z) ≤ qτ ) ≥ τ , and pτ := P (x(Z) < qτ ) ≤ τ . Then

P

(∥∥∥∥∥

n∑

i=1

Zi

∥∥∥∥∥
F
> x0 ∨ x(Z)

)
≤ 4

p̄τ
P

(∥∥∥∥∥

n∑

i=1

εi (Zi − µi)
∥∥∥∥∥
F
>
x0 ∨ x(Z)

4k

)
+pτ

where x0 is a constant such that inff∈F P
(
|∑n

i=1 Zi(f)| ≤ x0
2

)
≥ 1− p̄τ

2 .

Theorem 11 (Maximal Inequality for Empirical Processes). Let

qD(F , 1− τ) = sup
f∈F

q(|Gn(f)|, 1 − τ) ≤ sup
f∈F

√
varP (Gn(f))/τ

and consider the data dependent quantity

en(F ,Pn) =
√

2 log |F| sup
f∈F
‖f‖Pn,2.

Then, for any C ≥ 1 and τ ∈ (0, 1) we have

sup
f∈F
|Gn(f)| ≤ qD(F , 1 − τ/2) ∨ 4

√
2Cen(F ,Pn),

with probability at least 1− τ − 4 exp(−(C2 − 1) log |F|)/τ .

Proof. Step 1. (Main Step) In this step we prove the main result. First,
recall en(F ,Pn) :=

√
2 log |F| supf∈F ‖f‖Pn,2. Note that supf∈F ‖f‖Pn,2 is√

2-sub-exchangeable by Step 2 below.
By the symmetrization Lemma 17 we obtain

P
{
supf∈F |Gn(f)| > 4

√
2Cen(F ,Pn) ∨ qD(F , 1− τ/2)

}
≤

4
τ P
{
supf∈F |Go

n(f)| > Cen(F ,Pn)
}
+ τ.

Thus a union bound yields

(G.1)
P
{
supf∈F |Gn(f)| > 4

√
2Cen(F ,Pn) ∨ qD(F , 1− τ/2)

}
≤

τ + 4|F|
τ supf∈F P {|Go

n(f)| > Cen(F ,Pn)} .

We then condition on the values of Z1, . . . , Zn, denoting the conditional
probability measure as Pε. Conditional on Z1, . . . , Zn, by the Hoeffding in-
equality the symmetrized process Go

n is sub-Gaussian for the L2(Pn) norm,
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namely, for f ∈ F , Pε{|Go
n(f)| > x} ≤ 2 exp(−x2/[2‖f‖2

Pn,2
]). Hence, we can

bound

Pε {|Go
n(f)| ≥ Cen(F ,Pn)|Z1, . . . , Zn} ≤ 2 exp(−C2en(F ,Pn)

2/[2‖f‖2
Pn,2

])

≤ 2 exp(−C2 log |F|).

Taking the expectation over Z1, . . . , Zn does not affect the right hand side
bound. Plugging in this bound into relation (G.1) yields the result.

Step 2. (Auxiliary calculations.) To establish that supf∈F ‖f‖Pn,2 is
√
2-

sub-exchangeable, let Z̃ and Ỹ be created by exchanging any components
in Z with corresponding components in Y . Then
√
2(sup

f∈F
‖f‖

Pn(Z̃),2 ∨ sup
f∈F
‖f‖

Pn(Ỹ ),2) ≥ (sup
f∈F
‖f‖2

Pn(Z̃),2
+ sup

f∈F
‖f‖2

Pn(Ỹ ),2
)1/2

≥ (sup
f∈F

En[f(Z̃i)
2] + En[f(Ỹi)

2])1/2 = (sup
f∈F

En[f(Zi)
2] + En[f(Yi)

2])1/2

≥ (sup
f∈F
‖f‖2

Pn(Z),2 ∨ sup
f∈F
‖f‖2

Pn(Y ),2)
1/2= sup

f∈F
‖f‖Pn(Z),2 ∨ sup

f∈F
‖f‖Pn(Y ),2.

Corollary 8 (Data-dependent probability inequality). Let ǫi be i.i.d
random variables such that E[ǫi] = 0 and E[ǫ2i ] = σ2 for i = 1, . . . , n. Con-
ditional on x1, . . . , xn ∈ IRp, we have that for any C ≥ 1, with probability at
least 1− 1/[9C2 log p],

‖En[xiǫi]‖∞ ≤ C · 24
√

log p

n
max

j=1,...,p

√
En[ǫ

2
i x

2
ij] ∨

√
σ2En[x

2
ij ].

Proof of Corollary 8. Consider the class of separable empirical pro-
cess induced by ‖En[xiǫi]‖∞, i.e. the class of functions f ∈ F = {ǫixij : j ∈
{1, . . . , p}} so that

√
n‖En[xiǫi]‖∞ = supf∈F |Gn(f)|. Define the data de-

pendent quantity

en(F ,Pn) =
√

2 log p max
j=1,...,p

√
En[ǫ

2
i x

2
ij].

Then, by Theorem 11, for any constant C ≥ 1

sup
f∈F
|Gn(f)| ≤ q(F , 1− τ/2) ∨ 4

√
2Cen(F ,Pn).

with probability 1− τ − 4 exp(−(C2− 1) log p)/τ . Picking τ = 1/[2C2 log p],
we have by the Chebyshev’s inequality

q(F , 1 − τ/2) ≤ max
j=1,...,p

√
E[ǫ2ix

2
ij ]/
√
τ/2 = 2C

√
log p max

j=1,...,p

√
E[ǫ2ix

2
ij ]
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Setting C ≥ 3 we have with probability 1− 1/[C2 log p]

sup
f∈F
|Gn(f)| ≤

(
6
C

3

√
log p max

j=1,...,p

√
E[ǫ2i x

2
ij]

)
∨
(
24
C

3

√
log p max

j=1,...,p

√
En[ǫ2i x

2
ij ]

)
.

(Note that if p ≤ 2 the statement is trivial since the probability is greater
than 1.)

G.5. Bounds via Symmetrization. Next we proceed to use sym-
metrization arguments to bound the empirical process. Let

‖f‖Pn,2 =
√

En[f(Xi)2], Gn(f) =
√
nEn[f(Xi)− E[f(Xi)]],

and for a random variable Z let q(Z, 1 − τ) denote its (1− τ)-quantile.

Lemma 18 (Maximal inequality via symmetrization). Let Z1, . . . , Zn be
arbitrary independent stochastic processes and F a finite set of measurable
functions. For any τ ∈ (0, 1/2), and δ ∈ (0, 1) we have that with probability
at least 1− 4τ − 4δ

maxf∈F |Gn(f(Zi))| ≤ max
{
4
√
2 log(2|F|/δ) q

(
maxf∈F

√
En[f(Zi)2], 1− τ

)
,

2maxf∈F q
(
|Gn(f(Zi))|, 12

)}
.
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