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Abstract

Variance function estimation in nonparametric regression is considered and the

minimax rate of convergence is derived. We are particularly interested in the effect of

the unknown mean on the estimation of the variance function. Our results indicate

that, contrary to the common practice, it is often not desirable to base the estimator of

the variance function on the residuals from an optimal estimator of the mean. Instead

it is more desirable to use estimators of the mean with minimal bias. In addition our

results also correct the optimal rate claimed in the previous literature.
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1 Introduction

Consider the heteroscedastic nonparametric regression model

yi = f(xi) + V
1
2 (xi)zi, i = 1, ..., n, (1)

where xi = i/n and zi are independent with zero mean, unit variance and uniformly

bounded fourth moments. Both the mean function f and variance function V are defined

on [0, 1] and are unknown. The main object of interest is the variance function V . The

estimation accuracy is measured both globally by the mean integrated squared error

R(V̂ , V ) = E

∫ 1

0
(V̂ (x)− V (x))2 dx (2)

and locally by the mean squared error at a point

R(V̂ (x∗), V (x∗)) = E(V̂ (x∗)− V (x∗))2. (3)

We wish to study the effect of the unknown mean f on the estimation of the variance

function V . In particular, we are interested in the case where the difficulty in estimation

of V is driven by the degree of smoothness of the mean f .

The effect of not knowing the mean f on the estimation of V has been studied before

in Hall and Carroll (1989). The main conclusion of their paper is that it is possible

to characterize explicitly how the smoothness of the unknown mean function influences

the rate of convergence of the variance estimator. In association with this they claim

an explicit minimax rate of convergence for the variance estimator under pointwise risk.

For example, they state that the “classical” rates of convergence (n−4/5) for the twice

differentiable variance function estimator is achievable if and only if f is in the Lipschitz

class of order at least 1/3. More precisely, Hall and Carroll (1989) stated that, under the

pointwise mean squared error loss the minimax rate of convergence for estimating V is

max{n−
4α

2α+1 , n
− 2β

2β+1 } (4)

if f has α derivatives and V has β derivatives. We shall show here that this result is in

fact incorrect.

In the present paper we revisit the problem in the same setting as in Hall and Carroll

(1989). We show that the minimax rate of convergence under both the pointwise squared

error and global integrated mean squared error is

max{n−4α, n
− 2β

2β+1 } (5)
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if f has α derivatives and V has β derivatives. The derivation of the minimax lower

bound is involved and is based on a moment matching technique and a two-point testing

argument. A key step is to study a hypothesis testing problem where the alternative

hypothesis is a Gaussian location mixture with a special moment matching property.

The minimax upper bound is obtained using kernel smoothing of the squared first order

differences.

Our results have two interesting implications. Firstly, if V is known to belong to a

regular parametric model, such as the set of positive polynomials of a given order, the

cutoff for the smoothness of f on the estimation of V is 1/4, not 1/2 as stated in Hall

and Carroll (1989). That is, if f has at least 1/4 derivative then the minimax rate of

convergence for estimating V is solely determined by the smoothness of V as if f were

known. On the other hand, if f has less than 1/4 derivative then the minimax rate

depends on the relative smoothness of both f and V and will be completely driven by the

roughness of f .

Secondly, contrary to the common practice, our results indicate that it is often not

desirable to base the estimator V̂ of the variance function V on the residuals from an

optimal estimator f̂ of f . In fact, the result shows that it is desirable to use an f̂ with

minimal bias. The main reason is that the bias and variance of f̂ have quite different effects

on the estimation of V . The bias of f̂ cannot be removed or even reduced in the second

stage smoothing of the squared residuals, while the variance of f̂ can be incorporated

easily.

The paper is organized as follows. Section 2 presents an upper bound for the minimax

risk while Section 3 derives a rate-sharp lower bound for the minimax risk under both the

global and local losses. The lower and upper bounds together yield the minimax rate of

convergence. Section 4 discusses the obtained results and their implications for practical

variance estimation in the nonparametric regression. The proofs are given in Section 6.

2 Upper bound

In this section we shall construct a kernel estimator based on the square of the first order

differences. Such and more general difference based kernel estimators of the variance

function have been considered, for example, in Müller and Stadtmüller (1987 and 1993).

For estimating a constant variance, difference based estimators have a long history. See

von Neumann (1941, 1942), Rice (1984), Hall, Kay and Titterington (1990) and Munk,

Bissantz, Wagner and Freitag (2005).
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Define the Lipschitz class Λα(M) in the usual way:

Λα(M) = {g : for all 0 ≤ x, y ≤ 1, k = 0, ..., bαc − 1,

|g(k)(x)| ≤ M, and |g(bαc)(x)− g(bαc)(y)| ≤ M |x− y|α′}

where bαc is the largest integer less than α and α′ = α − bαc. We shall assume that

f ∈ Λα(Mf ) and V ∈ Λβ(MV ). We say that the function f “has α derivatives” if

f ∈ Λα(Mf ) and V “has β derivatives” if V ∈ Λβ(MV ).

For i = 1, 2, ..., n− 1, set Di = yi − yi+1. Then one can write

Di = f(xi)− f(xi+1) + V
1
2 (xi)zi − V

1
2 (xi+1)zi+1 = δi +

√
2V

1
2

i εi (6)

where δi = f(xi)− f(xi+1), V
1
2

i =
√

1
2(V (xi) + V (xi+1)) and

εi = (V (xi) + V (xi+1))−
1
2 (V

1
2 (xi)zi − V

1
2 (xi+1)zi+1)

has zero mean and unit variance.

We construct an estimator V̂ by applying kernel smoothing to the squared differences

D2
i which have means δ2

i + 2Vi. Let K(x) be a kernel function satisfying

K(x) is supported on [−1, 1] ,

∫ 1

−1
K(x)dx = 1∫ 1

−1
K(x)xidx = 0 for i = 1, 2, · · · , bβc and∫ 1

−1
K2(x)dx = k < ∞.

It is well known in kernel regression that special care is needed in order to avoid sig-

nificant, sometimes dominant, boundary effects. We shall use the boundary kernels with

asymmetric support, given in Gasser and Müller (1979 and 1984), to control the boundary

effects. For any t ∈ [0, 1], There exists a boundary kernel function Kt(x) with support

[−1, t] satisfying the same conditions as K(x), i.e.∫ t

−1
Kt(x)dx = 1,∫ t

−1
Kt(x)xidx = 0 for i = 1, 2, · · · , bβc∫ t

−1
K2

t (x)dx ≤ k̂ < ∞ for all t ∈ [0, 1].
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We can also make Kt(x) → K(x) as t → 1 (but this is not necessary here). See Gasser,

Müller and Mammitzsch (1985). For any 0 < h < 1
2 , x ∈ [0, 1], and i = 2, · · · , n− 2, let

Kh
i (x) =


∫ (xi+xi+1)/2
(xi+xi−1)/2

1
hK(x−u

h )du when x ∈ (h, 1− h)∫ (xi+xi+1)/2
(xi+xi−1)/2

1
hKt(x−u

h )du when x = th for some t ∈ [0, 1]∫ (xi+xi+1)/2
(xi+xi−1)/2

1
hKt(−x−u

h )du when x = 1− th for some t ∈ [0, 1]

and we take the integral from 0 to (x1 + x2)/2 for i = 1, and from (xn−1 + xn−2)/2 to

1 fori = n − 1. Then we can see that for any 0 ≤ x ≤ 1,
∑n−1

i=1 Kh
i (x) = 1. Define the

estimator V̂ as

V̂ (x) =
1
2

n−1∑
i=1

Kh
i (x)D2

i . (7)

Same as in the mean function estimation problem, the optimal bandwidth hn can be

easily seen to be hn = O(n−1/(1+2β)) for V ∈ Λβ(MV ). For this optimal choice of the

bandwidth, we have the following theorem.

Theorem 1 Under the regression model (1) where xi = i/n and zi are independent with

zero mean, unit variance and uniformly bounded fourth moments, let the estimator V̂ be

given as in (7) with the bandwidth h = O(n−1/(1+2β)). Then there exists some constant

C0 > 0 depending only on α, β, Mf and MV such that for sufficiently large n,

sup
f∈Λα(Mf ),V ∈Λβ(MV )

sup
0≤x∗≤1

E(V̂ (x∗)− V (x∗))2 ≤ C0 ·max{n−4α, n
− 2β

1+2β } (8)

and

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E

∫ 1

0
(V̂ (x)− V (x))2 dx ≤ C0 ·max{n−4α, n

− 2β
1+2β }. (9)

Remark 1: The uniform rate of convergence given in (8) yields immediately the pointwise

rate of convergence that for any fixed point x∗ ∈ [0, 1]

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≤ C0 ·max{n−4α, n
− 2β

1+2β }.

Remark 2: It is also possible to use the local linear regression estimator instead of the

Priestley-Chao kernel estimator. In this case, the boundary adjustment is not necessary as

it is well known that the local linear regression adjusts automatically in boundary regions,

preserving the asymptotic order of the bias intact. However, the proof is slightly more

technically involved when using the local linear regression estimator. For details, see, for

example, Fan and Gijbels (1996).
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Remark 3: It is important to note here that the results given in Theorem 1 can be easily

generalized to the case of random design. In particular, if the observations X1, . . . , Xn

are iid with the design density f(x) that is bounded away from zero (i.e. f(x) ≥ δ > 0 for

all x ∈ [0, 1]), then the results of Theorem 1 are still valid conditionally. In other words,

sup
f∈Λα(Mf ),V ∈Λβ(MV )

sup
0≤x∗≤1

E(V̂ (x∗)− V (x∗)2|X1, . . . , Xn)

≤ C0 ·max{n−4α, n
− 2β

1+2β }+ op

(
max{n−4α, n

− 2β
1+2β }

)
and

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E

(∫ 1

0
(V̂ (x)− V (x))2 dx|X1, . . . , Xn

)
≤ C0 ·max{n−4α, n

− 2β
1+2β }+ op

(
max{n−4α, n

− 2β
1+2β }

)
where the constant C0 > 0 now also depends on δ.

3 Lower Bound

In this section, we derive a lower bound for the minimax risk of estimating the variance

function V under the regression model (1). The lower bound shows that the upper bound

given in the previous section is rate-sharp. As in Hall and Carroll (1989) we shall assume

in the lower bound argument that the errors are normally distributed, i.e., zi
iid∼ N(0, 1).

Theorem 2 Under the regression model (1) with zi
iid∼ N(0, 1),

inf
V̂

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E‖V̂ − V ‖2
2 ≥ C1 ·max{n−4α, n

− 2β
1+2β } (10)

and for any fixed x∗ ∈ (0, 1)

inf
V̂

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≥ C1 ·max{n−4α, n
− 2β

1+2β } (11)

where C1 > 0 is a constant depending only on α, β, Mf and MV .

It follows immediately from Theorems 1 and 2 that the minimax rate of convergence for

estimating V under both the global and local losses is

max{n−4α, n
− 2β

1+2β }.
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The proof of this theorem can be naturally divided into two parts. The first step is to

show

inf
V̂

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≥ C1n
− 2β

1+2β . (12)

This part is standard and relatively easy. Brown and Levine (2006) contains a detailed

proof of this assertion for the case β = 2. Their argument can be easily generalized to

other values of β. We omit the details.

The proof of the second step,

inf
V̂

sup
f∈Λα(Mf ),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≥ C1n
−4α, (13)

is much more involved. The derivation of the lower bound (13) is based on a moment

matching technique and a two-point testing argument. One of the main steps is to study

a complicated hypothesis testing problem where the alternative hypothesis is a Gaussian

location mixture with a special moment matching property.

More specifically, let X1, ..., Xn
iid∼ P and consider the following hypothesis testing

problem between

H0 : P = P0 = N(0, 1 + θ2
n)

and

H1 : P = P1 =
∫

N(θnν, 1)G(dν)

where θn > 0 is a constant and G is a distribution of the mean ν with compact support.

The distribution G is chosen in such a way that, for some positive integer q depending on

α, the first q moments of G match exactly with the corresponding moments of the standard

normal distribution. The existence of such a distribution is given in the following lemma

from Karlin and Studden (1966).

Lemma 1 For any fixed positive integer q, there exist a B < ∞ and a symmetric dis-

tribution G on [−B,B] such that G and the standard normal distribution have the same

first q moments, i.e.∫ B

−B
xjG(dx) =

∫ +∞

−∞
xjϕ(x)dx, j = 1, 2, · · · , q

where ϕ denotes the density of the standard normal distribution.

The moment matching property makes the testing between the two hypotheses “difficult”.

The lower bound (13) then follows from a two-point argument with an appropriately

chosen θn. Technical details of the proof are given in Section 6.
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Remark 4: For α between 1/4 and 1/8, a much simpler proof can be given with a two-

point mixture for P1 which matches the mean and variance, but not the higher moments,

of P0 and P1. However, this simpler proof fails for smaller α. It appears to be necessary

in general to match higher moments of P0 and P1.

Remark 5: Hall and Carroll (1989) gave the lower bound C max{n−4α/(1+2α)), n−2β/(1+2β))}
for the minimax risk. This bound is larger than the lower bound given in our Theorem

2 and is incorrect. This is due to a miscalculation on appendix C of their paper. A key

step in that proof is to find some d ≥ 0 such that

D = E

{
[1 + exp(

1
2
d + d

1
2 N1)]−1(

1
2
d + d

1
2 N1)

}
6= 0.

In the above expression, N1 denotes a standard normal random variable. But in fact

D =
∫ ∞

−∞

1
2d + d

1
2 x

1 + exp(1
2d + d

1
2 x)

1√
2π

exp(−x2

2
)dx

=
∫ ∞

−∞

x

1 + exp(x)
1√
2πd

exp(−
(x− 1

2d)2

2d
)dx

=
∫ ∞

−∞

x

exp(x/2) + exp(−x/2)
1√
2πd

exp(−x2

2d
− d

8
)dx.

This is an integral of an odd function which is identically 0 for all d.

4 Discussion

Variance function estimation in regression is more typically based on the residuals from

a preliminary estimator f̂ of the mean function. Such estimators have the form

V̂ (x) =
∑

i

wi(x)(yi − f̂(xi))2 (14)

where wi(x) are weight functions. A natural and common approach is to subtract in (14)

an optimal estimator f̂ of the mean function f(x). See, for example, Hall and Carroll

(1989), Neumann (1994), Ruppert, Wand, Holst, and Hössjer (1997), and Fan and Yao

(1998). When the unknown mean function is smooth, this approach often works well since

the bias in f̂ is negligible and V can be estimated as well as when f is identically zero.

However, when the mean function is not smooth, using the residuals from an optimally

smoothed f̂ will lead to a sub-optimal estimator of V . For example, Hall and Carroll

(1989) used a kernel estimator with optimal bandwidth for f̂ and showed that the resulting
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variance estimator attains the rate of

max{n−
4α

2α+1 , n
− 2β

2β+1 } (15)

over f ∈ Λα(Mf ) and V ∈ Λβ(MV ). This rate is strictly slower than the minimax rate

when 4α
2α+1 < 2β

2β+1 or equivalently, α < β
2β+2 .

Consider the example where V belongs to a regular parametric family, such as {V (x) =

exp(ax + b) : a, b ∈ R}. As Hall and Carroll have noted this case is equivalent to the

case of β = ∞ in results like Theorems 1 and 2. Then the rate of convergence for this

estimator becomes nonparametric at n−
4α

2α+1 for α < 1
2 , while the optimal rate is the usual

parametric rate n−
1
2 for all α ≥ 1

4 and is n−4α for 0 < α < 1
4 .

The main reason for the poor performance of such an estimator in the non-smooth

setting is the “large” bias in f̂ . An optimal estimator f̂ of f balances the squared bias

and variance. However, the bias and variance of f̂ have significantly different effects

on the estimation of V . The bias of f̂ cannot be further reduced in the second stage

smoothing of the squared residuals, while the variance of f̂ can be incorporated easily.

For f ∈ Λα(Mf ), the maximum bias of an optimal estimator f̂ is of order n−
α

2α+1 which

becomes the dominant factor in the risk of V̂ when α < β
2β+2 .

To minimize the effect of the mean function in such a setting one needs to use an

estimator f̂(xi) with minimal bias. Note that our approach is, in effect, using a very crude

estimator f̂ of f with f̂(xi) = yi+1. Such an estimator has high variance and low bias.

As we have seen in Section 2 the large variance of f̂ does not pose a problem (in terms of

rates) for estimating V . Hence for estimating the variance function V an optimal f̂ is the

one with minimum possible bias, not the one with minimum mean squared error. (Here

we should of course exclude the obvious, and not useful, unbiased estimator f̂(xi) = yi).

Another implication of our results is that the unknown mean function does not have

any first-order effect for estimating V as long as f has more than 1/4 derivatives. When

α > 1/4, the variance estimator V̂ is essentially adaptive over f ∈ Λα(Mf ) for all α > 1/4.

In other words, if f is known to have more than 1/4 derivatives, the variance function V

can be estimated with the same degree of first-order precision as if f is completely known.

However, when α < 1/4, the rate of convergence for estimating V is entirely determined

by the degree of smoothness of the mean function f .
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5 Numerical results

We now consider in this section the finite sample performance of our difference-based

method for estimating the variance function. In particular we are interested in compar-

ing the numerical performance of the difference-based estimator with the residual-based

estimator of Fan and Yao (1998). The numerical results show that the performance of the

difference-based estimator is somewhat inferior when the unknown mean function is very

smooth. On the other hand, the difference-based estimator performs significantly better

than the residual-based estimator when the mean function is not smooth.

Consider the model (1) where the variance function is V (x) =
(
x− 1

2

)2+ 1
2 while there

are four possible mean functions:

1. f1(x) = 0

2. f2(x) = 3
4 ∗ sin(10π x)

3. f3(x) = 3
4 ∗ sin(20π x)

4. f4(x) = 3
4 ∗ sin(40π x).

The mean functions are arranged from a constant to much rougher sinusoid function;

the ”roughness” ( the difficulty a particular mean function creates in estimation of the

variance function V ) is measured by the functional R(f
′
) =

∫
[f

′
(x)]2 dx since the mean-

related term in the asymptotic bias of the variance estimator V̂ (x) is directly proportional

to it. The numerical performance of the difference-based method had been investigated

earlier in Levine (2006) for a slightly different set of mean functions.

For comparison purposes, the same four combinations of the mean and variance func-

tions are investigated using the two-step method described in Fan and Yao (1998). We

expect this method to perform better than the difference-based method in the case of

a constant mean function, but to get progressively worse as the roughness of the mean

function considered increases. The following table summarizes results of simulations using

both methods. In this case, the bandwidths for estimating the mean and variance func-

tions were selected using a K-fold cross-validation with K = 10. We consider the fixed

equidistant design xi = i
n on [0, 1] where the sample size is n = 1000; 100 simulations are

performed and the bandwidth h is selected using a K-fold cross-validation with K = 10.

The performance of both methods is measured using the cross-validation discrete mean
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squared error (CDMSE) that is defined as

CDMSE = n−1
n∑

i=1

[
V̂hCV

(xi)− V (xi)
]2

(16)

with hCV being the K-fold cross-validation bandwidth. We report the median CDMSE

for variance function estimators based on 100 simulations. The following table provides

the summary of the performance.

Table 1: Performance under the changing curvature of the mean function

Median CDMSE

Mean function R(f
′
) Fan-Yao method Our method

f = 0 0 0.00299 0.00376

f = 3
4 sin(10πx) 278.15 0.07161 0.00344

f = 3
4 sin(20πx) 1110.89 0.08435 0.00384

f = 3
4 sin(40πx) 4441.88 0.08363 0.00348

It is easily seen from the above table that the two-step method of Fan and Yao, based

on estimating the variance using squared residuals from the mean function estimation,

tends to perform slightly better when the mean function is very smooth but noticeably

worse when it is rougher. Note that here we only use the first-order differences. The

performance of the difference based estimator can be improved in the case of smooth

mean function by using higher order differences. The Fan-Yao method performs about

26% better in the first case of the constant mean function. However, the risk (CDMSE)

of the difference based method is over 95% smaller than the risk of the Fan-Yao method

for the second mean function. In the rougher cases, the difference is approximately the

same. The CDMSE of the difference based method is over 95% and 96% less than the

corresponding risk of the residual based method for the third and fourth mean functions,

respectively.

6 Proofs

6.1 Upper Bound: Proof of Theorem 1

We shall only prove (8). Inequality (9) is a direct consequence of (8). Recall that

D2
i = δ2

i + 2Vi + 2Vi(ε2i − 1) + 2
√

2δiV
1
2

i εi
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where δi = f(xi)− f(xi+1), V
1
2

i =
√

1
2(V (xi) + V (xi+1)) and

εi = (V (xi) + V (xi+1))−
1
2 (V

1
2 (xi)zi − V

1
2 (xi+1)zi+1).

Without loss of generality, suppose h = n−1/(1+2β). It is easy to see that for any x∗ ∈ [0, 1],∑
i K

h
i (x∗) = 1, and when x∗ ≥ (xi +xi+1)/2+h or x∗ ≤ (xi +xi−1)/2−h, Kh

i (x∗) equals

0. Suppose k < k̂, we also have(∑
i

|Kh
i (x∗)|

)2

≤ 2nh
∑

i

(Kh
i (x∗))2 ≤ 2

∫ 1

−1
K2
∗ (u)du ≤ 2k̂

where K∗(u) = K(u) when x∗ ∈ (h, 1 − h); K∗(u) = Kt(u) when x∗ = th for some

t ∈ [0, 1]; and K∗(u) = Kt(−u) when x∗ = 1− th for some t ∈ [0, 1].

The second inequality above is obtained as follows. For the sake of simplicity, assume

that K∗ = K; the same argument can be repeated for boundary kernels as well. Using

the definition of Kh
i (x∗), we note that it can be rewritten as

∫ xi+xi+1
2

xi+xi−1
2

1
nhK

(
x−u

h

)
d(nu).

Since the last integral is taken with respect to the probability measure on the interval

[xi+xi−1

2 , xi+xi+1

2 ], we can apply Jensen’s inequality to obtain

(Kh
i (x∗))2 ≤

1
nh

∫ xi+xi+1
2

xi+xi−1
2

K2

(
x− u

h

)
d(nu) =

1
(nh)2

∫ xi+xi+1
2

xi+xi−1
2

K2

(
x− u

h

)
du.

Thus, (∑
i

|Kh
i (x∗)|

)2

≤ 2
h

∑
i

∫ xi+xi+1
2

xi+xi−1
2

K2

(
x− u

h

)
du = 2

∫ 1

−1
K2(u)du.

For all f ∈ Λα(Mf ) and V ∈ Λβ(MV ), the mean squared error of V̂ at x∗ satisfies

E(V̂ (x∗)− V (x∗))2 = E

(
n−1∑
i=1

Kh
i (x∗)

(
1
2
D2

i − V (x∗)
))2

= E

{
n−1∑
i=1

Kh
i (x∗)

1
2
δ2
i +

n−1∑
i=1

Kh
i (x∗)(Vi − V (x∗))

+
n−1∑
i=1

Kh
i (x∗)Vi(ε2i − 1) +

n−1∑
i=1

Kh
i (x∗)

√
2δiV

1
2

i εi

}2

≤ 4

(
n−1∑
i=1

Kh
i (x∗)

1
2
δ2
i

)2

+ 4

(
n−1∑
i=1

Kh
i (x∗)(Vi − V (x∗))

)2

+ 4E

(
n−1∑
i=1

Kh
i (x∗)Vi(ε2i − 1)

)2

+ 4E

(
n−1∑
i=1

Kh
i (x∗)

√
2δiV

1
2

i εi

)2

.
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Suppose α ≤ 1/4, otherwise n−4α < n−2β/(1+2β) for any β. Since for any i, |δi| =

|f(xi)− f(xi+1)| ≤ Mf |xi − xi+1|α = Mfn−α, we have

4

(
n−1∑
i=1

Kh
i (x∗)

1
2
δ2
i

)2

≤ 4

(
n−1∑
i=1

|Kh
i (x∗)|

1
2
M2

f n−2α

)2

≤ 2k̂M4
f n−4α.

Note that for any x, y ∈ [0, 1], Taylor’s theorem yields∣∣∣∣∣∣V (x)− V (y)−
bβc∑
j=1

V (j)(y)
j!

(x− y)j

∣∣∣∣∣∣ =

∣∣∣∣∣
∫ x

y

(x− u)bβc−1

(bβc − 1)!
(V (bβc)(u)− V (bβc)(y))du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ x

y

(x− u)bβc−1

(bβc − 1)!
MV |x− y|β−bβc du

∣∣∣∣∣
≤ MV

bβc!
|x− y|β .

So,

Vi − V (x∗) =
1
2

(
V

(
i

n

)
+ V

(
i + 1

n

))
− V (x∗)

≤ 1
2

bβc∑
j=1

V (j)(x∗)
j!

((
i

n
− x∗

)j

+
(

i + 1
n

− x∗

)j
)

+
1
2
MV

∣∣∣∣ in − x∗

∣∣∣∣β +
1
2
MV

∣∣∣∣ i + 1
n

− x∗

∣∣∣∣β
and

Vi − V (x∗) ≥ 1
2

bβc∑
j=1

V (j)(x∗)
j!

((
i

n
− x∗

)j

+
(

i + 1
n

− x∗

)j
)

−1
2
MV

∣∣∣∣ in − x∗

∣∣∣∣β − 1
2
MV

∣∣∣∣ i + 1
n

− x∗

∣∣∣∣β .

Since the kernel functions have vanishing moments, for j = 1, 2, · · · , bβc , when n large

13



enough∣∣∣∣∣
n−1∑
i=1

Kh
i (x∗)

(
i

n
− x∗

)j
∣∣∣∣∣

=

∣∣∣∣∣
n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

1
h

K

(
x∗ − u

h

)(
i

n
− x∗

)j

du

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

1
h

K

(
x∗ − u

h

)
(u− x∗)jdu +

n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

1
h

K

(
x∗ − u

h

)[(
i

n
− x∗

)j

− (u− x∗)j

]
du

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

1
h

K

(
x∗ − u

h

)[(
i

n
− x∗

)j

− (u− x∗)
j

]
du

∣∣∣∣∣
≤ c′

n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

∣∣∣∣1h
(

x∗ − u

h

)∣∣∣∣× j

n
du = c′n−1

for some generic constant c′ > 0. Similarly
∑n−1

i=1 Kh
i (x∗)( i+1

n − x∗)j ≤ c′n−1. So,∣∣∣∣∣∣
n−1∑
i=1

Kh
i (x∗)

 bβc∑
j=1

V (j)(x∗)
j!

((
i

n
− x∗

)j

+
(

i + 1
n

− x∗

)j
)∣∣∣∣∣∣ ≤ Ĉn−1

for some constant Ĉ > 0 which does not depend on x∗. Note that V bβc satisfies Hölder

condition with exponent 0 < α
′
= α− bαc < 1 and is, therefore, continuous on [0, 1] and

bounded. Then we have

4

(
n−1∑
i=1

Kh
i (x∗)(Vi − V (x∗))

)2

≤ 2Ĉ2n−2 + 2M2
V

bn(x∗+h)c+1∑
i=bn(x∗−h)c

|Kh
i (x∗)|(

∣∣∣∣ in − x∗

∣∣∣∣β +
∣∣∣∣ i + 1

n
− x∗

∣∣∣∣β)

2

≤ 2Ĉ2n−2 + 2M2
V

bn(x∗+h)c+1∑
i=bn(x∗−h)c

|Kh
i (x∗)|(

∣∣∣∣h +
1
n

∣∣∣∣β +
∣∣∣∣h +

2
n

∣∣∣∣β)

2

≤ 2Ĉ2n−2 + 8× 32βM2
V n−2β/(1+2β) × (2k̂).

The last inequality is due to the fact 0 < h + 1
n < h + 2

n < 3h. On the other hand, notice

that ε1, ε3, ε5, · · · are independent and ε2, ε4, ε6, · · · are independent, we have

4E

(
n−1∑
i=1

Kh
i (x∗)

√
2δiV

1
2

i εi

)2

= 4V ar

(
n−1∑
i=1

Kh
i (x∗)

√
2δiV

1
2

i εi

)

≤ 16
bn(x∗+h)c+1∑
i=bn(x∗−h)c

(
Kh

i (x∗)
)2

δ2
i Vi

≤ 16M2
f MV n−2α−2β/(1+2β) × k̂

14



and

4E

(
n−1∑
i=1

Kh
i (x∗)Vi(ε2i − 1)

)2

= 4V ar

(
n−1∑
i=1

Kh
i (x∗)Vi(ε2i − 1)

)

≤ 8M2
V µ4

n−1∑
i=1

(
Kh

i (x∗)
)2

≤ 8M2
V µ4

1
nh

k̂

= 8M2
V µ4n

−2β/(1+2β) × k̂

where µ4 denotes the uniform bound for the fourth moments of the εi.

Putting the four terms together we have, uniformly for all x∗ ∈ [0, 1], f ∈ Λα(Mf ) and

V ∈ Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≤ 2k̂M4
f n−4α + 2Ĉ2n−2 + 8× 32βM2

V n−2β/(1+2β) × (2k̂)

+ 8M2
V µ4n

−2β/(1+2β)k̂ + 16M2
f MV n−2α−2β/(1+2β)k̂

= C0 ·max{n−4α, n−2β/(1+2β)}

for some constant C0 > 0. This proves (8).

6.2 Lower Bound: : Proof of Theorem 2

We shall only prove the lower bound for the pointwise squared error loss. The same proof

with minor modifications immediately yields the lower bound under integrated squared

error. Note that, to prove inequality (13), we only need to focus on the case where

α < 1/4, otherwise n−2β/(1+2β) is always greater than n−4α for sufficiently large n and

then (13) follows directly from (12).

For a given 0 < α < 1/4, there exists an integer q such that (q + 1)α > 1. For

convenience we take q to be an odd integer. From lemma 1, there is a positive constant

B < ∞ and a symmetric distribution G on [−B,B] such that G and N(0, 1) have the

same first q moments. Let ri, i = 1, ..., n, be independent variables with the distribution

G. Set θn = Mf

2B n−α, f0 ≡ 0, V0(x) ≡ 1 + θ2
n and V1(x) ≡ 1. Let g(x) = 1 − 2n|x| for

x ∈ [− 1
2n , 1

2n ] and 0 otherwise. Define the random function f1 by

f1(x) =
n∑

i=1

θnrig(x− xi)I(0 ≤ x ≤ 1).

Then it is easy to see that f1 is in Λα(Mf ) for all realizations of ri. Moreover, f1(xi) = θnri

are independent and identically distributed.
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Now consider testing the following hypotheses,

H0 : yi = f0(xi) + V
1
2

0 (xi)νi, i = 1, ..., n,

H1 : yi = f1(xi) + V
1
2

1 (xi)νi, i = 1, ..., n,

where νi are independent N(0, 1) variables which are also independent of the ri’s. Denote

by P0 and P1 the joint distributions of yi’s under H0 and H1, respectively. Note that for

any estimator V̂ of V ,

max{E(V̂ (x∗)− V0(x∗))2, E(V̂ (x∗)− V1(x∗))2} ≥ 1
16

ρ4(P0, P1)(V0(x∗)− V1(x∗))2

=
1
16

ρ4(P0, P1)
M4

f

16B4
n−4α (17)

where ρ(P0, P1) is the Hellinger affinity between P0 and P1. See, for example, Le Cam

(1986). Let p0 and p1 be the probability density function of P0 and P1 with respect to

the Lebesgue measure µ, then ρ(P0, P1) =
∫ √

p0p1dµ. The minimax lower bound (13)

follows immediately from the two-point bound (17) if we show that for any n, the Hellinger

affinity ρ(P0, P1) ≥ C for some constant C > 0. (C may depend on q, but does not depend

on n.)

Note that under H0, yi ∼ N(0, 1 + θ2
n) and its density d0 can be written as

d0(t) ,
1√

1 + θ2
n

ϕ

(
t√

1 + θ2
n

)
=
∫

ϕ (t− vθn) ϕ(v)dv.

Under H1, the density of yi is d1(t) ,
∫

ϕ(t− vθn)G(dv).

It is easy to see that ρ(P0, P1) = (
∫ √

d0d1dµ)n, since the yi’s are independent variables.

Note that the Hellinger affinity is bounded below by the total variation affinity,∫ √
d0(t)d1(t)dt ≥ 1− 1

2

∫
|d0(t)− d1(t)| dt.

Taylor expansion yields

ϕ(t− vθn) = ϕ(t)

( ∞∑
k=0

vkθk
n

Hk(t)
k!

)

where Hk(t) is the corresponding Hermite polynomial. And from the construction of the

distribution G, ∫
viG(dv) =

∫
viϕ(v)dv for i = 0, 1, · · · , q.
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So,

|d0(t)− d1(t)| =
∣∣∣∣∫ ϕ(t− vθn)G(dv)−

∫
ϕ(t− vθn)ϕ(v)dv

∣∣∣∣
=

∣∣∣∣∣
∫

ϕ(t)
∞∑
i=0

Hi(t)
i!

viθi
nG(dv)−

∫
ϕ(t)

∞∑
i=0

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nG(dv)−

∫
ϕ(t)

∞∑
i=q+1

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nG(dv)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣∣ . (18)

Suppose q + 1 = 2p for some integer p, it can be seen that∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nG(dv)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

ϕ(t)
∞∑
i=p

H2i(t)
(2i)!

θ2i
n v2iG(dv)

∣∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

θ2i
n

∣∣∣∣ ∣∣∣∣∫ v2iG(dv)
∣∣∣∣

≤ ϕ(t)
∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2i

and ∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

ϕ(t)
∞∑
i=p

H2i(t)
(2i)!

θ2i
n v2iϕ(v)dv

∣∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

θ2i
n

∣∣∣∣ ∣∣∣∣∫ v2iϕ(v)dv

∣∣∣∣
=

∣∣∣∣∣∣ϕ(t)
∞∑
i=p

H2i(t)θ2i
n

1
2i · i!

∣∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n .

So from (18),

|d0(t)− d1(t)| ≤ ϕ(t)
∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2i + ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n
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and then∫ √
d0(t)d1(t)dt ≥ 1− 1

2

∫ ϕ(t)
∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2i + ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n

 dt

= 1− 1
2

∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2idt− 1

2

∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n dt. (19)

Since
∫

t2iφ(t)dt = (2i − 1)!! where (2i − 1)!! , (2i − 1) × (2i − 3) × · · · 3 × 1, for the

Hermite polynomial H2i we have∫
ϕ(t) |H2i(t)| dt =

∫
ϕ(t)

∣∣∣∣∣(2i− 1)!!×

[
1 +

i∑
k=1

(−2)ki(i− 1) · · · (i− k + 1)
(2k)!

t2k

]∣∣∣∣∣ dt

≤
∫

ϕ(t)

[
(2i− 1)!!×

(
1 +

i∑
k=1

2ki(i− 1) · · · (i− k + 1)
(2k)!

t2k

)]
dt

= (2i− 1)!!×

(
1 +

i∑
k=1

2ki(i− 1) · · · (i− k + 1)
(2k)!

∫
t2kϕ(t)dt

)

= (2i− 1)!!×

(
1 +

i∑
k=1

2ki(i− 1) · · · (i− k + 1)
(2k)!

(2k − 1)!!

)

= (2i− 1)!!×

(
1 +

i∑
k=1

i(i− 1) · · · (i− k + 1)
k!

)
= 2i × (2i− 1)!!.

For sufficiently large n, θn < 1/2 and it then follows from the above inequality that∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2idt ≤

∞∑
i=p

θ2i
n B2i

(2i)!

∫
ϕ(t) |H2i(t)| dt ≤

∞∑
i=p

θ2i
n B2i

(2i)!
2i × (2i− 1)!!

= θ2p
n

∞∑
i=p

B2iθ2i−2p
n

i!
≤ θ2p

n × eB2

and ∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n dt ≤

∞∑
i=p

θ2i
n

2i · i!

∫
ϕ(t) |H2i(t)| dt

≤
∞∑
i=p

θ2i
n

2i · i!
2i × (2i− 1)!! = θ2p

n

∞∑
i=p

(2i− 1)!!
i!

θ2i−2p
n

≤ θ2p
n

∞∑
i=p

2i × θ2i−2p
n ≤ θ2p

n

∞∑
i=p

2i × (
1
2
)2i−2p

= θ2p
n × 22p+1.
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Then from (19) ∫ √
d0(t)d1(t)dt ≥ 1− θ2p

n (
1
2
eB2

+ 22p) , 1− cθq+1
n

where c is a constant that only depends on q. So

ρ(P0, P1) = (
∫ √

d0(t)d1(t)dt)n ≥ (1− cθq+1
n )n = (1− cn−α(q+1))n.

Since α(q +1) ≥ 1, limn→∞(1− cn−α(q+1))n ≥ e−c > 0 and the theorem then follows from

(17).
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