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Abstract

Variance function estimation in multivariate nonparametric regression is consid-

ered and the minimax rate of convergence is established. Our work uses the approach

that generalizes the one used in Munk et al (2005) for the constant variance case. As

is the case when the number of dimensions d = 1, and very much contrary to the

common practice, it is often not desirable to base the estimator of the variance func-

tion on the residuals from an optimal estimator of the mean. Instead it is desirable to

use estimators of the mean with minimal bias. Another important conclusion is that

the first order difference-based estimator that achieves minimax rate of convergence

in one-dimensional case does not do the same in the high dimensional case. Instead,

the optimal order of differences depends on the number of dimensions.
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1 Introduction

We consider the multivariate nonparametric regression problem

yi = g(xi) + V
1
2 (xi)zi (1)

where yi ∈ R, xi ∈ S = [0, 1]d ⊂ Rd while zi are iid random variables with zero mean and

unit variance and have bounded absolute fourth moments: E |zi| ≤ µ4 < ∞. We use the

bold font to denote any d-dimensional vectors with d > 1 (except d-dimensional indices)

and regular font for scalars. The design is assumed to be a fixed equispaced d-dimensional

grid; in other words, we consider xi = {xi1 , . . . , xid}
′ ∈ Rd where ik = 1, . . . ,m for

k = 1, . . . , d. Each coordinate is defined as

xik =
ik
m

(2)

for k = 1, . . . , d. The overall sample size is n = md. The index i used in the model

(1) is a d-dimensional index i = (i1, . . . , id). Both g(x) and V (x) are unknown functions

supported on S = [0, 1]d. The minimax rate of convergence for the estimator V̂ under

different smoothness assumptions on g is the main subject of interest. The estimation

accuracy for V̂ is measured both globally by the mean integrated squared error (MISE)

R(V̂ , V ) = E

∫
Rd

(V̂ (x)− V (x))2 dx (3)

and locally by the mean squared error at a point (pointwise risk)

R(V̂ (x∗), V (x∗)) = E(V̂ (x∗)− V (x∗))2. (4)

We are particularly interested in finding how the difficulty of estimating V depends on

the smoothness of the mean function g as well as the smoothness of the variance function V

itself. This paper is closely related to Munk et al (2005) where the problem of estimating a

constant variance V (x) ≡ σ2 in the multidimensional setup (1) is considered. They use a

difference-based approach to variance estimation but note that “... Difference estimators

are only applicable when homogeneous noise is present, i.e. the error variance does not

depend on the regressor” (Munk et al (2005), p.20). We extend their difference-based

approach to the case of non-homogeneous (heteroskedastic) situation where the variance

V is a function of the regressor x. This paper is also closely connected to Wang et al (2006)

where a first-order difference based procedure for variance function estimation was studied

in the one-dimensional case. The present paper considers variance function estimation in
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the multidimensional case which has some different characteristics from those in the one-

dimensional case. In particular, first order differences are inadequate in high dimensional

case. In fact, as in the constant variance case, it is no longer possible to use any fixed

order differences and achieve asymptotically minimax rate of convergence for an arbitrary

number of dimensions d > 1. The order of differences needs to grow with the number of

dimensions d.

We show that the minimax rate of convergence for estimating the variance function

V under both the pointwise squared error and global integrated mean squared error is

max{n−
4α
d , n

− 2β
2β+d } (5)

if g has α derivatives, V has β derivatives and d is the number of dimensions. So the

minimax rate depends on the smoothness of both V and g. The minimax upper bound is

obtained by using kernel smoothing of the squared differences of observations. The order

of the difference scheme used depends on the number of dimensions d. The minimum

order needs to be γ = dd/4e, the smallest integer larger than or equal to d/4. With such a

choice of the difference sequence our estimator is adaptive with respect to the smoothness

of the mean function g. The derivation of the minimax lower bound is based on a moment

matching technique and a two-point testing argument. A key step is to study a hypothesis

testing problem where the alternative hypothesis is a Gaussian location mixture with a

special moment matching property.

It is also interesting to note that, if V is known to belong to a regular parametric

model, such as the set of positive polynomials of a given order (which corresponds to

β = ∞), the cutoff for the smoothness of g on the estimation of V is d/4. That is, if g has

at least d/4 derivatives then the minimax rate of convergence for estimating V is solely

determined by the smoothness of V as if g were known. On the other hand, if g has less

than d/4 derivatives then the minimax rate depends on the relative smoothness of both g

and V and, for sufficiently small α, will be completely determined by it. The larger d is,

the smoother the mean function g has to be in order not to influence the minimax rate of

convergence for estimating the variance function V .

The paper is organized as follows. Section 2 presents an upper bound for the minimax

risk while Section 3 derives a rate-sharp lower bound for the minimax risk under both

global and local losses. The lower and upper bounds together yield the minimax rate

of convergence. Section 4 contains a detailed discussion of obtained results and their

implications for practical variance estimation in the nonparametric regression. The proofs

are given in Section 5.
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2 Upper bound

In this section we shall construct a kernel variance estimator based on squared differences

of observations given in (1). Note that it is possible to consider a more general design

where not all mk ≡ m, k = 1, . . . , d and xik is defined as a solution of the equation
ik
mk

=
∫ xik
−∞ fk(s) ds for a set of strictly positive densities fk(s). This does not change the

conclusion of the paper and only adds a layer of technical complexity to the discussion.

We will adhere to a simpler design (2) throughout this paper.

Difference based estimators have a long history for estimating a constant variance in

univariate nonparametric regression. See, for example, von Neumann (1941, 1942), Rice

(1984), Hall et al (1990), Hall and Marron (1990), Dette et al (1998). The multidimen-

sional case was first considered when the dimensionality d = 2 in Hall et al (1991). The

general case of estimating a constant variance in arbitrary dimension has only recently

been investigated in Munk et al (2005). The estimation of the variance function V (x)

that depends on the covariate is a more recent topic. In the one-dimensional case, we

can mention Müller and Stadtmüller (1987, 1993) and Brown and Levine (2006). The

multidimensional case, to the best of our knowledge, has not been considered before.

The following notation will be used throughout the paper. Define a multi-index J =

{j1, . . . , jd} as a sequence of nonnegative integers j1, . . . , jd. For a fixed positive integer

l, let J(l) = {J = (j1, j2, . . . , jd : |J | = l}. For an arbitrary function f , we define

Dlf = ∂lf(·)
∂x

j1
1 ...∂x

jd
d

, if |J | = l. For any two vectors x = (x1, . . . , xd)
′
and y = (y1 . . . , yd)

′
we

define the differential operator

Dx,y =
d∑

k=1

(yk − xk)
∂

∂zk
= 〈y − x,∇〉 (6)

where zk is a generic kth argument of a d-dimensional function while ∇ is a gradient

operator in Rd. (6) is useful for writing the multivariate Taylor expansion in a concise form.

For an arbitrary x ∈ Rd we define xJ = xj1
1 . . . xjd

d . Also, for any vector u and real number

v, the set B = u+vA is the set of all vectors {y ∈ Rd : y = u+va for some a ∈ A ⊂ Rd}.
For any positive integer α, let bαc denote the largest integer that is strictly less than α,

dαe the smallest integer that is greater than α, and α
′
= α− bαc. Now we can state the

functional class definition that we need.

Definition 1 For any α > 0 and M > 0, we define the Lipschitz class Λα(M) as the set

of all functions f(x) : [0, 1]d → R such that |Dlf(x)| ≤ M for l = 0, 1, . . . , bαc, and,

|Dbαcf(x)−Dbαcf(y)| ≤ M ‖ x− y ‖α
′
.
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We assume that g ∈ Λα(Mg) and V ∈ Λβ(MV ). We will say for the sake of simplicity

that “g has α continuous derivatives” while “V has β continuous derivatives”.

In this section we construct a kernel estimator based on differences of raw observations

and derive the rate of convergence for the estimator. Special care must be taken to define

differences in multivariate case. When d = 1 and there is a set of difference coefficients

dj , j = 0, . . . , r such that
∑r

j=0 dj = 0,
∑r

j=0 d2
j = 1 we define the difference “anchored”

around the point yi as
∑r

j=0 djyi+j . When d > 1, there are multiple ways to enumerate

observations lying around yi. An example that explains how to do it in the case d = 2 is

given in Munk et al (2005). For a general d > 1, we first select a d-dimensional index set

J ∈ Zd that contains 0. Next, we define the set R consisting of all d-dimensional vectors

i = (i1, . . . , id) such that

R + J ≡ {(i + j)|j ∈ J, i ∈ R} ⊆ ⊗d
k=1{1, . . . ,m}. (7)

Again, a subset of R + J corresponding to a specific i∗ ∈ R is denoted i∗ + J . Then, the

difference “anchored” around the point yi∗ is defined by

Di∗ =
∑
j∈J

djyi∗+j . (8)

The cardinality of the set J is called the order of the difference. For a good example that

illustrates this notation style when d = 2 see Munk et al (2005).

Now we can define the variance estimator V̂ (x). To do this, we use kernel-based

weights Kh
i (x) that are generated by either regular kernel function K(·) or the boundary

kernel function K∗(·), depending on the location of the point x in the support set S. The

kernel function K(·) : Rd → R has to satisfy the following set of assumptions:

K(x) is supported on T = [−1, 1]d ,

∫
T

K(x)dx = 1 (9)∫
T

K(x)xJ dx = 0 for 0 < |J | < bβc and∫
T

K2(x)dx = k1 < ∞.

Specially designed boundary kernels are needed to control the boundary effects in kernel

regression. In the one-dimensional case boundary kernels with special properties are

relatively easy to describe. See, for example, Gasser and Müller (1979). It is, however,

more difficult to define boundary kernels in multidimensional case because not only the

distance from the boundary of S but also the local shape of the boundary region plays a

role in defining the boundary kernels when d > 1. In this paper we use the d-dimensional
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boundary kernels given in Müller and Stadtmüller (1999). We only briefly describe the

basic idea here. Recall that we work with a nonnegative kernel function K : T → R with

support T = [−1, 1]d ⊂ Rd. For a given point x ∈ S consider a ”moving” support set

Sn = x + h(S − x) which changes with x and depends on n through the bandwidth h.

Using this varying support set Sn, it is possible to define the support Tx of the boundary

kernel that is independent of n. To do this, first define the set Tn(x) = x − hT ; the

subscript n again stresses that this set depends on n through the bandwidth h. This

is the set of all points that form an h-neighborhood of x. Using Tn(x) and the moving

support Sn, we have the transposed and rescaled support of the boundary kernel as

Tx = h−1[x− {Tn(x)∩ Sn}] = h−1(x− {x + h(S −x)} ∩ (x− hT )) = (x− S)∩ T. (10)

The subscript n has been omitted since Tx is, indeed, independent of n. Thus, the support

of the boundary kernel has been stabilized. The boundary kernel K∗(·) with support on

Tx can then be defined as a solution of a certain variational problem in much the same

way as a regular kernel K(·). For more details, see Müller and Stadtmüller (1999).

Using this notation, we can define the general variance estimator as

V̂ (x) =
∑
i∈R

Kh
i (x)D2

i =
∑
i∈R

Kh
i (x)

∑
j∈J

djyi+j

2

(11)

The kernel weights are defined as

Kh
i (x) =

{
n−1h−dK

(
xi−x

h

)
when x− hT ⊂ S,

n−1h−dK∗
(

xi−x
h

)
when x− hT * S.

It can also be described by the following algorithm:

1. Choose a d-dimensional index set J ;

2. Construct the set R;

3. Define the estimator
∑

i∈R Kh
i (x)

(∑
j∈J djyi+j

)2
as a local average using kernel-

generated weights Kh
i (x)

In this paper we will use the index set J selected to be a sequence of γ points on the

straight line in the d-dimensional space that includes the origin:

J = {(0, 0, . . . , 0), (1, 1, . . . , 1), . . . , (γ, γ, . . . , γ)}. (12)
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In addition, we use normalized binomial coefficients as the difference coefficients. This is

the so-called polynomial sequence (see, e.g. Munk et al (2005)) and is defined as

dk =
(

γ

k

)
(−1)k

/(2γ

γ

)1/2

where k = 0, 1, . . . , γ. It is clear that
∑γ

k=0 dk = 0,
∑γ

k=0 d2
k = 1, and

∑γ
k=0 kqdk = 0 for

any q = 1, 2, . . . , γ.

Remark 1: It is possible to define a more general estimator by considering averaging

over several possible d dimensional index sets Jl, l = 1, . . . , L and defining a set Rl for

each one of them according to (7). In other words, we define

V̂ (x) =
L∑

l=1

µl

∑
i∈Rl

Kh
i (x)D2

i =
L∑

l=1

µl

∑
i∈Rl

Kh
i (x)

∑
j∈Jl

djyi+j

2

(13)

where µl is a set of weights such that
∑

l µl = 1. The proof of the main result in the

general case is completely analogous to the case L = 1 with an added layer of technical

complication. Therefore, in this paper we will limit ourselves to the discussion of the case

L = 1 and the definition (11) will be used with the set J selected as in (12).

Similarly to the mean function estimation problem, the optimal bandwidth hn can be

easily found to be hn = O(n−1/(2β+d)) for V ∈ Λβ(MV ). For this optimal choice of the

bandwidth, we have the following theorem.

Theorem 1 Under the regression model (1) with zi being independent random variables

with zero mean, unit variance and uniformly bounded fourth moments, we define the esti-

mator V̂ as in (11) with the bandwidth h = O(n−1/(2β+d)) and the order of the difference

sequence γ = dd/4e. Then there exists some constant C0 > 0 depending only on α, β,

Mg, MV and d such that for sufficiently large n,

sup
g∈Λα(Mg),V ∈Λβ(MV )

sup
x∗∈S

E(V̂ (x∗)− V (x∗))2 ≤ C0 ·max{n−
4α
d , n

− 2β
2β+d } (14)

and

sup
g∈Λα(Mg),V ∈Λβ(MV )

E

∫
Rd

(V̂ (x)− V (x))2 dx ≤ C0 ·max{n−
4α
d , n

− 2β
2β+d }. (15)

Remark 2: The uniform rate of convergence given in (14) yields immediately the point-

wise rate of convergence for any fixed point x∗ ∈ S

sup
g∈Λα(Mg),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≤ C0 ·max{n−
4α
d , n

− 2β
2β+d }.
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3 Lower Bound

Theorem 1 gives the upper bounds for the minimax risks of estimating the variance func-

tion V (x) under the multivariate regression model (1). In this section we shall show that

the upper bounds are in fact rate-optimal. We derive lower bounds for the minimax risks

which are of the same order as the corresponding upper bounds given in Theorem 1 . In

the lower bound argument we shall assume that the errors are normally distributed, i.e.,

zi
iid∼ N(0, 1).

Theorem 2 Under the regression model (1) with zi
iid∼ N(0, 1),

inf
V̂

sup
g∈Λα(Mg),V ∈Λβ(MV )

E‖V̂ − V ‖2
2 ≥ C1 ·max{n−

4α
d , n

− 2β
d+2β } (16)

and for any fixed x∗ ∈ [0, 1]d

inf
V̂

sup
g∈Λα(Mg),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≥ C1 ·max{n−
4α
d , n

− 2β
d+2β } (17)

where C1 > 0 is a constant.

Combining Theorems 1 and 2 yields immediately the minimax rate of convergence,

max{n−
4α
d , n

− 2β
d+2β },

for estimating V under both the global and pointwise losses.

Theorem 2 is proved in Section 5. The proof is based on a moment matching technique

and a two-point testing argument. One of the main steps is to study a hypothesis testing

problem where the alternative hypothesis is a Gaussian location mixture with a special

moment matching property.

4 Discussion

The first important observation that we can make on the basis of reported results is that

the unknown mean function g does not have any first-order effect on the minimax rate

of convergence of the estimator V̂ as long as the function g has at least d/4 derivatives.

When this is true, the minimax rate of convergence for V̂ is n−2β/2β+d, which is the same

as if the mean function g had been known. Therefore the variance estimator V̂ is adaptive

over the collection of the mean functions g that belong to Lipschitz classes Λα(Mg) for all

α ≥ d/4. On the other hand, if the function g has less then d/4 derivatives, the minimax
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rate of convergence for V̂ is determined by the relative smoothness of both g and V . When

4α/d < 2β/(2β + d), the roughness of g becomes the dominant factor in determining the

convergence rate for V̂ . In other words, when α < dβ/(2(2β +d)), the rate of convergence

becomes n−4α/d and thus is completely determined by α. To make better sense of this

statement, let us consider the case of β = ∞ which corresponds to the variance function

V belonging to a known parametric family (see Hall and Carroll (1989)). Clearly, when

β → ∞ the cutoff dβ/(2(2β + d)) → d/4. Thus, when d = 2, any mean function g with

less than 1/2 of a derivative will completely determine the rate of convergence for V̂ ; when

d = 4, any mean function with less than 1 derivative will do and so on. As the number of

dimensions d grows and the function V becomes smoother, the rate of convergence of V̂

becomes more and more dependant on the mean function. In other words, ever increasing

set of possible mean functions will completely “overwhelm” the influence of the variance

function in determining the minimax convergence rate.

As opposed to many common variance estimation methods, we do not estimate the

mean function first. Instead, we estimate the variance as the local average of squared

differences of observations. Taking a difference of a set of observations is, in a sense, an

attempt to ”average out” the influence of the mean. It is possible to say then that we

use an implicit ”estimator” of the mean function g that is effectively a linear combination

of all yj , j ∈ J except y0. Such an estimator is, of course, not optimal since its squared

bias and variance are not balanced. The reason it has to be used is because the bias and

variance of the mean estimator ĝ have a very different influence on V̂ . As is the case

when d = 1 (again, see Wang et al (2006)), the influence of the bias of ĝ is impossible

to reduce at the second stage of variance estimation. Therefore, at the first stage we use

an ”estimator” of g that provides for the maximal reduction in bias possible under the

assumption of g ∈ Λα(Mg), down to the order n−2α/d. On the contrary, the variance of

the “estimator” ĝ is high but this is of little concern it is incorporated easily into the

variance estimation procedure. Thus, in practical terms, subtracting optimal estimators

of the mean function g first may not be the most desirable course of action.

Note also that it is not enough to use here a simple first order difference the way it

has been done in the case of d = 1 by Wang et al (2006). The reason is that this does not

allow us to reduce the mean-related bias of the variance estimator V̂ to the fullest extent

possible. It is not enough to consider only α < 1/4 as is the case when d = 1. Instead,

when proving the upper bound result, we have to consider mean functions with α < d/4.

Thus, higher order differences are needed in order to reduce the mean-related bias to the

order of n−2α/d and to ensure the minimax rate of convergence.
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5 Proofs

5.1 Upper Bound: Proof of Theorem 1

We will use M to denote a generic positive constant throughout this section. We shall

only prove (14). Inequality (15) is a direct consequence of (14). Recall that T = [−1, 1]d

is the support of the kernel K. Using the notation we introduced earlier, we can write

the difference Di as

Di =
∑
j∈J

djg(xi+j) +
∑
j∈J

djV
1/2(xi+j)zi+j = δi + V

1
2

i εi (18)

where δi =
∑

j∈J djg(xi+j), V
1
2

i =
√∑

j∈J d2
jV (xi+j) and

εi =

∑
j∈J

d2
jV (xi+j)

−1/2∑
j∈J

djV
1
2 (xi+j)zi+j


has zero mean and unit variance. Thus,

D2
i = δ2

i + Vi + Vi(ε2i − 1) + 2δiV
1
2

i εi.

Without loss of generality, suppose h = n−1/(2β+d). Because the kernel K(·) has a bounded

support T = [−1, 1]d, we have(∑
i∈R

|Kh
i (x∗)|

)2

≤ 2dnhd
∑
i∈R

(Kh
i (x∗))2 ≤ 2d

∫
[−1,1]d

K2
∗∗(u)du ≤ 2dk (19)

where k = max(k1, k2). In the above, K∗∗(u) = K(u) when u ∈ Tn(u)∩S and K∗∗(u) =

K∗(u) when u * Tn(u) ∩ S.

Recall that V̂ (x∗) − V (x∗) =
∑

i∈R Kh
i (x∗)D2

i − V (x∗). For all g ∈ Λα(Mg) and
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V ∈ Λβ(MV ), the mean squared error of V̂ at x∗ satisfies

E(V̂ (x∗)− V (x∗))2 = E

(∑
i∈R

Kh
i (x∗)

(
D2

i − V (x∗)
)

+ o(n−1h−d)

)2

= E

{∑
i∈R

Kh
i (x∗)δ2

i +
∑
i∈R

Kh
i (x∗)(Vi − V (x∗))

+
∑
i∈R

Kh
i (x∗)Vi(ε2i − 1) + 2

∑
i∈R

Kh
i (x∗)δiV

1
2

i εi + o(n−1h−d)

}2

≤ 5

(∑
i∈R

Kh
i (x∗)δ2

i

)2

+ 5

(∑
i∈R

Kh
i (x∗)(Vi − V (x∗))

)2

+ 5E

(∑
i∈R

Kh
i (x∗)Vi(ε2i − 1)

)2

+ 20E

(∑
i∈R

Kh
i (x∗)δiV

1
2

i εi

)2

+ o(n−2h−2d).

Recall that it is enough to consider only α < d/4. Denote γ = dd/4e. Thus defined γ will

be the same as maximum possible value of bαc for all α < d/4. Denoting 0 ≤ u ≤ 1 and

using Taylor expansion of g(xi+j) around xi, we have for a difference sequence of order γ

|δi| =

∣∣∣∣∣∣
∑
j∈J

djg(xi+j)

∣∣∣∣∣∣ =
∣∣∣∑

j∈J

dj

(
g(xi) +

bαc∑
m=1

(Dxi+j ,xi)
mg(xi)

m!

+
∫ 1

0

(1− u)bαc−1

(bαc − 1)!
((Dxi+j ,xi)

bαcg(xi + u(xi+j − xi))− (Dxi+j ,xi)
bαcg(xi)du)

)∣∣∣.
The first two terms in the above expression are zero by definition of the difference sequence

dj of order γ. Using the notation xk
i for the kth coordinate of xi, the explicit representation

of the operator (Dxi+j ,xi)
bαc gives

|(Dxi+j ,xi)
bαcg(xi + u(xi+j − xi))− (Dxi+j ,xi)

bαcg(xi)|

=
∣∣∣ ∑

1≤t1≤...≤tbαc≤d

bαc∏
r=1

(xtr
i+j − xtr

i )

Dbαcg(xi + u(xi+j − xi))


−

∑
1≤t1≤...≤tbαc≤d

bαc∏
r=1

(xtr
i+j − xtr

i )

Dbαcg(xi)

 ∣∣∣.
Now we use the definition of Lipschitz space Λα(Mg), Jensen’s and Hölder’s inequalities
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to find that:

|(Dbαc)g(xi + u(xi+j − xi))− (D)bαcg(xi)|

≤ Mg||u(xi+j − xi)||α
′

∣∣∣∣∣∣
∑

1≤t1≤...≤tbαc≤d

bαc∏
r=1

(xtr
i+j − xtr

i )

∣∣∣∣∣∣
≤ Mg||xi+j − xi||α

′ ∑
1≤t1...≤tbαc≤d

bαc∑
r=1

|xtr
i+j − xtr

i |bαc

bαc

≤ M ||xi+j − xi||α
′
||xi+j − xi||bαc = M ||xi+j − xi||α;

as a consequence, we have |δi| ≤ Mn−α/d. Thus,

4

(∑
i∈R

Kh
i (x∗)δ2

i

)2

≤ 4

(∑
i∈R

|Kh
i (x∗)|M2n−2α/d

)2

≤ 2d+2kM4n−4α/d = O(n−4α/d).

In exactly the same way as above, for any x,y ∈ [0, 1]d, Taylor’s theorem yields∣∣∣∣∣∣V (x)− V (y)−
bβc∑
j=1

(Dx,y)jV (y)
j!

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(1− u)bβc−1

bβc − 1
((Dx,y)bβcV (y + u(x− y))− (Dx,y)bβcV (y)) du

∣∣∣∣∣
≤ M ||x− y||β

∫ 1

0

∣∣∣∣∣(1− u)bβc−1

bβc − 1

∣∣∣∣∣ du ≤ M ||x− y||β. (20)

So,

Vi − V (x∗) =
∑
j∈J

d2
jV (xi+j)− V (x∗) =

∑
j∈J

d2
j [V (xi+j)− V (x∗)]

=
∑
j∈J

d2
j

bβc∑
k=1

(Dxi+j ,x∗)kV (x∗)
k!

+
∑
j∈J

d2
j

∫ 1

0

(1− u)bβc−1

bβc − 1
((Dxi+j ,x∗)

bβcV (xi+j)− (Dxi+j ,x∗)
bβcV (x∗)) du.

Therefore, we have

∑
i∈R

Kh
i (x∗)(Vi − V (x∗)) =

∑
i∈R

Kh
i (x∗)

∑
j∈J

d2
j

bβc∑
k=1

(Dxi+j ,x∗)kV (x∗)
k!

+
∑
i∈R

Kh
i (x∗)

∑
j∈J

d2
j

∫ 1

0

(1− u)bβc−1

bβc − 1
((Dxi+j ,x∗)

bβcV (xi+j)− (Dxi+j ,x∗)
bβcV (x∗)) du.

12



It is fairly straightforward to find out that the first term is bounded by∣∣∣∣∣∣
∑
i∈R

Kh
i (x∗)

∑
j∈J

d2
j

bβc∑
k=1

(Dxi+j ,x∗)kV (x∗)
k!

∣∣∣∣∣∣
=

∣∣∣∣∣∣n−1h−d
∑
i∈R

K

(
xi − x∗

h

)∑
j∈J

d2
j

bβc∑
k=1

1
k!

∑
1≤t1≤...≤tk≤d

k∏
r=1

(xtr
i+j − xtr

i )DkV (x∗)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Mn−1h−d

bβc∑
k=1

hk
∑
i∈R

K(ui)uk
i

∣∣∣∣∣∣ = o(n−1h−(d−1)).

To establish the last inequality it is important to remember that the fact that V ∈
Λβ(MV ) and therefore |DkV (x∗)| ≤ MV . To handle the product

∏k
r=1(x

tr
i+j − xtr

i ) the

inequality
∏n

i=1 xi ≤ n−1
∑n

i=1 xn
i , that is true for any positive numbers x1, . . . , xn, must

be used. The equality that follows is based on the fact that kernel K has bβc vanishing

moments. After taking square the above will become o(n−2h−2(d−1)); compared to the

optimal rate of n−2β/2β+d, it is easy to check that this term is always of smaller order

o(n−2β/(2β+d)−(2β+2)/(2β+d)).

Using (20), we find that the absolute value of the second term gives us∣∣∣∣∣∣
∑
i∈R

Kh
i (x∗)

∑
j∈J

d2
j

∫ 1

0

(1− u)bβc−1

bβc − 1
((Dxi+j ,x∗)

βV (xi+j)− (Dxi+j ,x∗)
bβcV (x∗)) du

∣∣∣∣∣∣
≤ Mh−β

∑
i∈R

|Ki
h(x∗)|

∑
j∈J

d2
j = O(n−β/2β+d)

From here it follows by taking squares that 5
(∑

i∈R Kh
i (x∗)(Vi − V (x∗))

)2 is of the order

O(n−2β/(2β+d)).

On the other hand, since V ≤ MV , we have due to (19)

5E

(∑
i∈R

Kh
i (x∗)δiV

1
2

i εi

)2

= 5V ar

(∑
i∈R

Kh
i (x∗)δiV

1
2

i εi

)
= 5

∑
i∈R

(
Kh

i (x∗)
)2

δ2
i Vi

≤ 5MV n−2α/d−2β/(2β+d) × k

and

20E

(∑
i∈R

Kh
i (x∗)Vi(ε2i − 1)

)2

= 20V ar

(∑
i∈R

Kh
i (x∗)Vi(ε2i − 1)

)
≤ 20M2

V µ4

∑
i∈R

(
Kh

i (x∗)
)2

≤ 20M2
V µ4

1
nhd

k = 20M2
V µ4n

−2β/(2β+d) × k.

13



Putting the four terms together we have, uniformly for all x∗ ∈ [0, 1]d, g ∈ Λα(Mg)

and V ∈ Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≤ C0 ·max{n−4α/d, n−2β/(2β+d)}

for some constant C0 > 0. This proves (14).

6 Proof of Theorem 2

The proof of this theorem can be naturally divided into two parts. The first step is to

show

inf
V̂

sup
g∈Λα(Mg),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≥ C1n
− 2β

d+2β . (21)

This part is standard and relatively easy. The proof of the second step,

inf
V̂

sup
g∈Λα(Mg),V ∈Λβ(MV )

E(V̂ (x∗)− V (x∗))2 ≥ C1n
− 4α

d , (22)

is based on a moment matching technique and a two-point testing argument. More specif-

ically, let X1, ..., Xn
iid∼ P and consider the following hypothesis testing problem between

H0 : P = P0 = N(0, 1 + θ2
n)

and

H1 : P = P1 =
∫

N(θnν, 1)G(dν)

where θn > 0 is a constant and G is a distribution of the mean ν with compact support.

The distribution G is chosen in such a way that, for some positive integer q depending on

α, the first q moments of G match exactly with the corresponding moments of the standard

normal distribution. The existence of such a distribution is given in the following lemma

from Karlin and Studden (1966).

Lemma 1 For any fixed positive integer q, there exist a B < ∞ and a symmetric dis-

tribution G on [−B,B] such that G and the standard normal distribution have the same

first q moments, i.e.∫ B

−B
xjG(dx) =

∫ +∞

−∞
xjϕ(x)dx, j = 1, 2, · · · , q

where ϕ denotes the density of the standard normal distribution.

14



We shall only prove the lower bound for the pointwise squared error loss. The same

proof with minor modifications immediately yields the lower bound under integrated

squared error. Note that, to prove inequality (22), we only need to focus on the case

where α < d/4, otherwise n−2β/(d+2β) is always greater than n−4α/d for sufficiently large

n and then (22) follows directly from (21).

For a given 0 < α < d/4, there exists an integer q such that (q + 1)α > d. For

convenience we take q to be an odd integer. From lemma 1, there is a positive constant

B < ∞ and a symmetric distribution G on [−B,B] such that G and N(0, 1) have the

same first q moments. Let ri, i = 1, ..., n, be independent variables with the distribution

G. Set θn = Mg

2B m−α, g0 ≡ 0, V0(x) ≡ 1 + θ2
n and V1(x) ≡ 1. Let h(x) = 1 − 2m|x| for

|x| ∈ [− 1
2m , 1

2m ] and 0 otherwise (Here |x| ,
√

x2
1 + · · ·+ x2

d). Define the random function

g1 by

g1(x) =
n∑

i=1

θnrih(x− xi)I(x ∈ [0, 1]d).

Then it is easy to see that g1 is in Λα(Mg) for all realizations of ri. Moreover, g1(xi) = θnri

are independent and identically distributed.

Now consider testing the following hypotheses,

H0 : yi = g0(xi) + V
1
2

0 (xi)εi, i = 1, ..., n,

H1 : yi = g1(xi) + V
1
2

1 (xi)εi, i = 1, ..., n,

where εi are independent N(0, 1) variables which are also independent of the ri’s. Denote

by P0 and P1 the joint distributions of yi’s under H0 and H1, respectively. Note that for

any estimator V̂ of V ,

max{E(V̂ (x∗)− V0(x∗))2, E(V̂ (x∗)− V1(x∗))2} ≥ 1
16

ρ4(P0, P1)(V0(x∗)− V1(x∗))2

=
1
16

ρ4(P0, P1)
M4

g

16B4
m−4α (23)

where ρ(P0, P1) is the Hellinger affinity between P0 and P1. See, for example, Le Cam

(1986). Let p0 and p1 be the probability density function of P0 and P1 with respect to

the Lebesgue measure µ, then ρ(P0, P1) =
∫ √

p0p1dµ. The minimax lower bound (22)

follows immediately from the two-point bound (23) if we show that for any n, the Hellinger

affinity ρ(P0, P1) ≥ C for some constant C > 0. (Note that m−4α = n−4α/d).

Note that under H0, yi ∼ N(0, 1 + θ2
n) and its density d0 can be written as

d0(t) ,
1√

1 + θ2
n

ϕ(
t√

1 + θ2
n

) =
∫

ϕ(t− vθn)ϕ(v)dv.

15



Under H1, the density of yi is d1(t) ,
∫

ϕ(t− vθn)G(dv).

It is easy to see that ρ(P0, P1) = (
∫ √

d0d1dµ)n, since the yi’s are independent variables.

Note that the Hellinger affinity is bounded below by the total variation affinity,∫ √
d0(t)d1(t)dt ≥ 1− 1

2

∫
|d0(t)− d1(t)| dt.

Taylor expansion yields ϕ(t − vθn) = ϕ(t)
( ∞∑

k=0

vkθk
n

Hk(t)
k!

)
where Hk(t) is the corre-

sponding Hermite polynomial. And from the construction of distribution G,
∫

viG(dv) =∫
viϕ(v)dv for i = 0, 1, · · · , q. So,

|d0(t)− d1(t)| =
∣∣∣∣∫ ϕ(t− vθn)G(dv)−

∫
ϕ(t− vθn)ϕ(v)dv

∣∣∣∣
=

∣∣∣∣∣
∫

ϕ(t)
∞∑
i=0

Hi(t)
i!

viθi
nG(dv)−

∫
ϕ(t)

∞∑
i=0

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nG(dv)−

∫
ϕ(t)

∞∑
i=q+1

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nG(dv)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣∣ . (24)

Suppose q + 1 = 2p for some integer p, it can be seen that∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nG(dv)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

ϕ(t)
∞∑
i=p

H2i(t)
(2i)!

θ2i
n v2iG(dv)

∣∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

θ2i
n

∣∣∣∣ ∣∣∣∣∫ v2iG(dv)
∣∣∣∣ ≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2i

and ∣∣∣∣∣∣
∫

ϕ(t)
∞∑

i=q+1

Hi(t)
i!

viθi
nϕ(v)dv

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

ϕ(t)
∞∑
i=p

H2i(t)
(2i)!

θ2i
n v2iϕ(v)dv

∣∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

θ2i
n

∣∣∣∣ ∣∣∣∣∫ v2iϕ(v)dv

∣∣∣∣ =
∣∣∣∣∣∣ϕ(t)

∞∑
i=p

H2i(t)θ2i
n

1
2i · i!

∣∣∣∣∣∣ ≤ ϕ(t)
∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n

where (2i− 1)!! , (2i− 1)× (2i− 3)× · · · 3× 1. So from (24),

|d0(t)− d1(t)| ≤ ϕ(t)
∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2i + ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n
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and then∫ √
d0(t)d1(t)dt ≥ 1− 1

2

∫ ϕ(t)
∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2i + ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n

 dt

= 1− 1
2

∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2idt− 1

2

∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n dt. (25)

For the Hermite polynomial H2i, we have∫
ϕ(t) |H2i(t)| dt =

∫
ϕ(t)

∣∣∣∣∣(2i− 1)!!×

[
1 +

i∑
k=1

(−2)ki(i− 1) · · · (i− k + 1)
(2k)!

t2k

]∣∣∣∣∣ dt

≤
∫

ϕ(t)

[
(2i− 1)!!×

(
1 +

i∑
k=1

2ki(i− 1) · · · (i− k + 1)
(2k)!

t2k

)]
dt

= (2i− 1)!!×

(
1 +

i∑
k=1

2ki(i− 1) · · · (i− k + 1)
(2k)!

∫
t2kϕ(t)dt

)

= (2i− 1)!!×

(
1 +

i∑
k=1

2ki(i− 1) · · · (i− k + 1)
(2k)!

(2k − 1)!!

)

= (2i− 1)!!×

(
1 +

i∑
k=1

i(i− 1) · · · (i− k + 1)
k!

)
= 2i × (2i− 1)!!.

For sufficiently large n, θn < 1/2 and it then from the above inequality that∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
(2i)!

∣∣∣∣ θ2i
n B2idt ≤

∞∑
i=p

θ2i
n B2i

(2i)!

∫
ϕ(t) |H2i(t)| dt ≤

∞∑
i=p

θ2i
n B2i

(2i)!
2i × (2i− 1)!!

= θ2p
n

∞∑
i=p

B2iθ2i−2p
n

i!
≤ θ2p

n × eB2

and ∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i(t)
2i · i!

∣∣∣∣ θ2i
n dt ≤

∞∑
i=p

θ2i
n

2i · i!

∫
ϕ(t) |H2i(t)| dt

≤
∞∑
i=p

θ2i
n

2i · i!
2i × (2i− 1)!! = θ2p

n

∞∑
i=p

(2i− 1)!!
i!

θ2i−2p
n

≤ θ2p
n

∞∑
i=p

2i × θ2i−2p
n ≤ θ2p

n

∞∑
i=p

2i × (
1
2
)2i−2p

= θ2p
n × 22p+1.
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Then from (25)∫ √
d0(t)d1(t)dt ≥ 1− 1

2
θ2p
n × eB2 − 1

2
θ2p
n × 22p+1 = 1− θ2p

n (
1
2
eB2

+ 22p) , 1− cθq+1
n

where c is a constant that only depend on q. So

ρ(P0, P1) = (
∫ √

d0(t)d1(t)dt)n ≥ (1− cθq+1
n )n = (1− cn−

α(q+1)
d )n.

Since α(q+1)
d ≥ 1, limn→∞(1− cn−

α(q+1)
d )n ≥ e−c > 0 and the theorem then follows.
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