
THE MULTILINEAR KAKEYA INEQUALITY

1. The discussion from last time, heuristics and memories

Suppose that {Ti} is a Kakeya set of tubes in R
n. Each tube has radius 1 and

length N , and there are ∼ Nn−1 tubes. Suppose that | ∪ Ti| ∼ Nn−γ.
The number of unit cubes from the unit cube lattice that intersect ∪Ti is ∼ Nn−γ .

We use the polynomial ham sandwich theorem to choose a polynomial P so that
Z(P ) bisects each of these unit cubes. The degree of Z(P ) is . N1−γ/n. What does
such a polynomial tell us? Let Q(K) be this set of cubes.

Consider one of the tubes, Ti. Let l be a line parallel to the axis of Ti, a randomly
chosen parallel line in the tube Ti. For almost every choice of l, we have |l∩Z(P )| ≤
deg(P ) . N1−γ/n. On the other hand, the tube Ti contains ∼ N cubes of Q(K), and
Z(P ) bisects each of them. Let Q(Ti) be this list of cubes. They are disjoint, so we
get

Averageq∈Q(Ti),l|l ∩ Z(P ) ∩ q| . N−1deg(P ) . N−γ/n.

For a typical cube q, we know that Z(P ) bisects q, and yet Averagel|Z(P )∩ q| .
N−γ/n is much smaller than 1. This is only possible if the surface Z(P ) ∩ q is
approximately parallel to the tube Ti. We can make a revised picture of the surface
Z(P ) in the tube Ti.

So the geometry of the surface Z(P ) is connected with the geometry of the tubes
Ti. If we try to imitate Dvir’s proof of the finite field Nikodym or Kakeya conjectures,
we are led to the following question. Extend each tube Ti a further length ∼ N , and
let q′ be a unit cube in the extension. Is it true that Z(P ) approximately bisects
q′? This type of question looks difficult, and it may be unlikely. The surface Z(P )
is approximately tangent to the tube Ti inside of Ti, but it’s hard to know whether
Z(P ) will bend sharply as soon as it leaves Ti and come nowhere near to q′.

I spent a while trying to force Z(P ) to hit q′, and it was pretty frustrating. I
would charge down one of the tubes Ti, trying to pin Z(P ) and carry it down to q′,
and Z(P ) would stay with me for a while and then swing out of the way, while I
went charging harmlessly by...

However, the structure that we observed above does say something interesting
about Kakeya sets. We noticed that for a typical cube q ⊂ Ti, the surface Z(P ) is
approximately tangent to Ti. But there are many different tubes Tj containing q.
With the method above, we can argue that Tj is approximately tangent to Z(P ) for
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most of the tubes. In fact, there must be a hyperplane π(q), and the tubes Tj must
usually be almost tangent to π(q). This is a somewhat surprising structure, called
planiness.

Planiness was first discovered by Katz, Laba, and Tao, in the paper “An improved
bound on the Minkowski dimension of Besicovitch sets in R

3.” (Ann. of Math. (2)
152 (2000), no. 2, 383-446.) Planiness was one of the observations/tools that allowed
them to prove that a Kakeya set of tubes in R

3 (with mild additional hypotheses)
has volume at least N2.5+ǫ. Later, Bennett, Carbery, and Tao proved stronger and
more general planiness estimates in the paper “On the multilinear restriction and
Kakeya conjectures” in Acta Math. 196 (2006), no. 2, 261-302. We will come to
their work below.

If we had a hypothetical Kakeya set of tubes, a typical cube would lie in many tubes
Tj . Without any experience, we might guess that the different tubes Tj ⊃ q would
point in a bush of directions that was pretty dense on the unit sphere. Suprisingly,
they need to concentrate near to a plane. Another way to say this is that they don’t
form a whole lot of joints.

During the course, we met many theorems about the incidence patterns of lines
in space. Each of these questions can be adapted to a question about long thin
tubes instead of lines. Usually the adapted question is wide open. But for the joints
problem, the adapted question has a nice answer based on the ideas we have just
been discussing.

2. The generalized Loomis-Whitney inequality

We prove here an analogue of the joints theorem with long thin tubes instead of
perfect lines.

Theorem 2.1. (Bennett-Carbery-Tao, Guth) Suppose that Tj,a are cylinders in R
n

for 1 ≤ j ≤ n and 1 ≤ a ≤ A. Each cylinder has radius 1 and infinite length. The
axis of a cylinder Tj,a makes an angle of < (100n)−1 with the xj-axis.

Let I be the points which lie in one cylinder for each value of j = 1...n. In equations
I := ∩n

j=1(∪
A
a=1Tj,a).

Then the volume of I is . A
n

n−1 .

Remarks. If the tubes Tj,a are parallel to the xj-axis, then this estimate follows
from the Loomis-Whitney inequality. We see that the projection of I to any coordi-
nate hyperplane lies in A unit balls, and then Loomis-Whitney gives |I| . A

n
n−1 . The

case of axis-parallel cylinders is basically equivalent to the Loomis-Whitney inequal-
ity. The problem here is to see that the inequality remains true if we are allowed to
tilt the tubes a few degrees.

History. BCT proved a tiny bit weaker estimate using monotonicity formulas
for the heat equation. G proved this estimate using the polynomial method. This
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theorem can be thought of as a version of joints for nearly-orthogonal tubes. It
implies, in particular, the joints theorem for nearly orthogonal lines.

The proof involves the idea of the directed volume of a surface. Suppose S is a
smooth hypersurface in R

n with normal vector N . If v is a unit vector, we define the
directed volume of S perpendicular to V by the formula

VS(v) :=

∫
S

|N · v|dvolS.

Notice that if the tangent plane of S is perpendicular to v, we have |N ·v| = 1, and
if the tangent plane contains v, we have |N · v| = 0. For example, we consider the
directed volume of the unit circle in the direction v = (0, 1). The directed volume of
an arc of the upper semi-circle in direction v is exactly the change in the x-coordinate
over the arc. Therefore, the directed volume of the whole upper semi circle is 2, and
the directed volume of the whole circle is 4.

The computation for the circle generalizes as follows. Let π be the orthogonal
projection from R

n to v⊥ ⊂ R
n.

Lemma 2.2. VS(v) =
∫

v⊥
|S ∩ π−1(y)|dvol(y).

As a corollary, we can immediately estimate the directed volume of a degree d
variety in a cylinder T .

Lemma 2.3. (Cylinder estimate) Let T be an infinite cylinder in R
⋉ of radius r.

Let v be a unit vector parallel to the axis of T . Let Z(P ) be the vanishing set of a
polynomial P .

Then VZ(P )∩T (v) . rn−1deg(P ).

Proof. Let π be the projection from T to the cross-section v⊥ ∩ T . This cross-
section is just an (n-1)-dimensional ball of radius r. For almost every y in this ball,
|π−1(y) ∩ Z(P )| ≤ deg(P ). By the last lemma, VZ(P )∩T (v) is bounded by deg(P )
times the volume of the cross-section, which is ∼ rn−1. �

Lemma 2.4. If S is a hypersurface in R
n, and v1, ..., vn are unit vectors and the

angle from vj to the xj-axis is ≤ (100n)−1, then V oln−1S ≤ 2
∑

j VS(vj).

Proof. At a given point of S with normal vector N , we have to prove that
∑

j |N ·

vj | ≥ 1/2. If ej are the coordinate vectors, then it’s straightforward to check that∑
j |N · vj| ≥ 1 for any unit vector N . The vectors vj are very close to ej , and so the

error has size ≤
∑

j |ej − vj | ≤ (1/100). �

Now we can do the proof of the theorem.

Proof. Consider the unit cubical lattice. Let Q1, ..., QV be all the unit cubes in the
lattice which intersect the set I. We will prove V . A

n
n−1 .
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Let P be a non-zero polynomial so that Z(P ) bisects each cube Q1, ..., QV and
degP . V 1/n. This bisection requires a certain amount of area, therefore:

V oln−1Z(P ) ∩ Qi & 1.

Let Tj(Qi) be a tube from our list, in direction j, which intersects Qi. Let vj,i be
the direction of this tube. The directions v1,i, ..., vn,i are nearly orthonormal, and so

n∑
j=1

VZ(P )∩Qi
(vj,i) & V oln−1Z(P ) ∩ Qi & 1.

For each cube, choose one direction j so that VZ(P )∩Qi
vj,i & 1, and assign the cube

Qi to the tube Tj(Qi). We have V cubes and nA tubes, so one of the tubes has
& V/A cubes assigned to it. Let T be this tube, and let v be its direction. We have
& V/A cubes Qi obeying the following conditions:

• The cube Qi intersects T .
• VZ(P )∩Qi

(v) & 1.

Let T̃ be a wider cylinder with radius 2n and with the same central axis as T . All
of the cubes Qi lie in T̃ . Therefore, we have

V/A . VZ(P )∩T̃ (v) . V 1/n.

The last inequality is by the cylinder estimate.
Rearranging we get V . A

n
n−1 . �

3. Multilinear Kakeya

The strongest version of the Kakeya conjecture is the Lp version. If Ti are a Kakeya
set of tubes of radius 1 and length N , the Lp Kakeya conjecture says that for each
ǫ > 0,

∫
Rn

|
∑

i

χTi
|

n
n−1 ≤ CǫN

ǫNn. (1)

Remarks: If we arrange the tubes in a disjoint way, the left hand side is ∼ Nn. If
we arrange them all centered at the origin, then the left hand side is ∼ (log N)Nn.
If true, this conjecture gives essentially sharp bounds for ‖

∑
i χTi

‖p for every p. It
implies that the union of tubes has volume at least cǫN

n−ǫ for any ǫ > 0.
This conjecture is still wide open. The multilinear Kakeya conjecture allows us to

control a positive fraction of all the terms - in a certain sense. First we rewrite the
left hand side of (1).
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∫
|
∑

i

χTi
|

n
n−1 =

∫
|
∑

i

χTi
|

1

n−1 · ... · |
∑

i

χTi
|

1

n−1

On the right hand side we have a product of n identical copies of |
∑

i χTi
|

1

n−1 . Now
we edit the formula, keeping only a constant fraction of the terms in each copy of

|
∑

i χTi
|

1

n−1 . Let I(j) be the subset of tubes Ti where the angle between v(Ti) and
the xj axis is ≤ (100n)−1. For each j, the number of such tubes is ∼ Nn−1 - they
form a positive fraction of all of the tubes.

Theorem 3.1. (Bennett-Carbery-Tao) For any ǫ > 0, there exists a constant Cǫ so
that for any Kakeya set of tubes,

∫ n∏
j=1

|
∑

i∈I(j)

χTi
|

1

n−1 ≤ CǫN
ǫNn.

(In this inequality, the N ǫ factor can actually be removed, see my paper “On the
endpoint case of the Bennett-Carbery-Tao multilinear Kakeya inequality”. But this
takes a lot of extra work.)

This inequality is a generalization of the last theorem. We explain how they are
related and we sketch the extra steps needed to prove the theorem. For any integers
µ1, ..., µn ≥ 0, consider the set of points:

I(µ) := {x ∈ R
n|2µj ≤ |

∑
i∈I(j)

χTi
| < 2µj+1 for all j.}

The left hand side is

∼
∑

µ

|I(µ)|
∏

j

2µj/(n−1).

Therefore, the theorem follows from the following lemma:

Lemma 3.2. For each µ as above, |I(µ)| . Nn
∏

j 2−µj/(n−1).

The lemma shows that each term in the sum above has size . Nn, and the number
of terms is . (log N)n, and so we get a bound for the total of . Nn(log N)n, which
proves the theorem.

If µ = 0, we have I(0) contained in the n-fold intersection set I defined above, and
the inequality follows from the Theorem in the last section. The other values of µ
are fairly similar.

Let us randomly choose I ′(j) ⊂ I(j), including each tube with probability 2−µj .
Let I ′ be the points lying in one tube Ti, i ∈ I ′(j) for each j. A point of I(µ) lies
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in I ′ with probability & 1. With high probability, the size of I ′(j) is ∼ Nn−12−µj .
Therefore, our bound for I(µ) follows from the following lemma.

Lemma 3.3. Let Tj,a a = 1...Aj be cylinders of radius 1 nearly parallel to the xj

axis. Then the volume of the set of points lying in at least one tube of each direction

is .
∏n

j=1 A
1

n−1

j .

If all the Aj happen to be equal, this lemma is exactly the theorem from the last
section.

The case of unequal Aj requires an extra refinement in the proof. We cut each
cube Qi into many smaller pieces, and we choose P to bisect each smaller piece. The
smaller pieces are arranged into a grid, cut more finely in the directions j where Aj is
small and more coarsely in the directions where Aj is large. Details in the exercises...

(More details. Take a cube Qi. Pick tubes Tj(Qi). Change coordinates so that
the vectors v(Tj(Qi)) become exactly orthogonal. In these coordinates, Qi is not

quite a cube, but contains a slightly smaller cube Q̃i. Chop Q̃i into a grid, where the
jth direction is cut subdivided into

∏
j′ 6=j Aj′. Choose Z(P ) to bisect each of these

pieces. ...)

4. Sharp turns of algebraic varieties?

So far, the polynomial method has not led to any progress on the Kakeya problem.
There are major difficulties in applying the methods we have seen to long thin tubes
instead of perfect lines.

In the proof of finite field Kakeya or Nikodym, we use parameter counting to find
a polynomial that vanishes in some places, and then we argue that the polynomial
also must vanish somewhere else. This step plays a key role in most of the proofs
we have seen in this course. It’s hard to see whether something like this can work in
the setting of tubes.

Suppose as in the first section that K is the union of a Kakeya set of 1×N tubes
with surprisingly small volume, and that P is a polynomial so that Z(P ) bisects each
cube of the unit lattice that intersects K. Pick a tube T from the Kakeya set, and
imagine extending it to twice its length, and let q be a unit cube in this extension.
Is there any hope that Z(P ) also roughly bisects q? We know that Z(P ) bisects
all the cubes in T , and we’ve also seen that in most of these cubes Z(P ) is roughly
parallel to T . If Z(P ) keeps going in the direction of its tangent plane, it will come
reasonably close to q (although it’s still not clear it will really hit q). But it’s not at
all clear whether Z(P ) will continue in the direction of its tangent plane. Perhaps
Z(P ) will curve dramatically and go nowhere near q.

It might be helpful to understand better how many sharp bends there can be in a
degree d algebraic surface. Here is a toy problem that gets at some of these issues.
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Let P be a polynomial in two variables. Let Pos(P ) := {x ∈ R
2|P (x) > 0}.

For a given degree d, how closely can Pos(P ) look like the square [−1, 1]2? Recall
that the Hausdorff distance from Pos(P ) to [−1, 1]2 is < ǫ if [−1, 1]2 lies in the ǫ-
neighborhood of Pos(P ) and Pos(P ) lies in the ǫ-neighborhood of the square. Let
ǫ(d) be the infimum over all degree d polynomials P of distHaus(Pos(P ), [−1, 1]2).
Can we describe the order of magnitude of ǫ(d)?

Very little is known about this. We know that ǫ(d) > 0 for each d. The reason is
that distHaus(Pos(P ), [−1, 1]2) varies lower semi-continuously as P moves in V (d) \
{0}. Multiplying P by a positive constant does not change Pos(P ), and so we can
restrict attention to polynomials in the unit sphere of V (d). By compactness the
infimum is attained. But if distHaus(Pos(P ), [−1, 1]2) were zero, we would have
P = 0 on the boundary of the square. Then P would vanish on the line x = 1, and
(x − 1) would factor out of P . Write P as (1 − x)aP1(x, y), where (1 − x) does not
divide P1. The polynomial P1 vanishes at only finitely many points of the line x = 1.
If a is even, then we see that P1 needs to vanish on the side of the square where
x = 1, and then 1 − x divides P1, and we get a contradiction. If a is odd, then we
see that P1 needs to vanish on the part of the line x = 1 where |y| > 1. This still
implies that 1 − x divides P1, and we get a contradiction.

If d is even, a nice example is the polynomial Pd = 1−xd − yd. The set Pos(Pd) is
the unit ball in the Ld norm. As d → ∞, it approaches the square, which is the unit
ball in the L∞ norm. For every even d, Pos(Pd) ⊂ [−1, 1]2, and Pd > 0 on the square
[−(1/2)1/d, (1/2)1/d]. Now 1 − (1/2)1/d ∼ 1/d, and so distHaus(Pos(Pd), [−1, 1]2) ∼
1/d. Hence ǫ(d) . 1/d. It seems plausible that Pd is near-optimal and that ǫ(d) &
1/d.

The hard problem is to give quantitative lower bounds on ǫ(d). I don’t know of
any explicit lower bound in the literature. I worked on the problem, and I had a
plan for a lower bound of the form e−ed

...
I think the moral issue is to give quantitative bounds on how sharply a degree d

curve can make a certain type of turn. It’s important to keep in mind the following
example. The zero set of the hyperbola xy = ǫ makes a very sharp turn near the
origin, which looks something like the corner of a square. But the hyperbola has
two branches, and so instead of being positive on approximately one quartant, it is
positive on two opposite quartants, and its positive set does not really look like the
neighborhood of a corner of a square. An algebraic curve can make an arbitrarily
sharp turn if it looks locally like a hyperbola with two branches, but it is harder for
it to make a sharp turn with only one branch.

I might have gone on too long about this toy problem. A solution to this problem
would not directly lead to any bounds on Kakeya. Trying to go further with the
polynomial method and tubes, this type of estimate seems to come up. In general, it
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might be helpful to have more quantitative estimates about the geometry of degree
d algebraic surfaces.


