
THE KAKEYA PROBLEM
1 Introdu
tionConsider 
ylinders Ti ⊆ R

n of length N and radius 1. {Ti} is a Kakeya set of tubes if {v(Ti)} are
1

N
-separated and 2

N
-dense in Sn−1, where v(Ti) is a unit ve
tor �in the dire
tion of the tube Ti�.Note that this implies that the number of tubes should be ∼ Nn−1.The main question that 
on
erns us is: How small 
an | ∪ Ti| be?In the previous le
ture we have seen Besi
ovit
h's 
onstru
tion, in whi
h | ∪ Ti| ∼

1

logN
· Nn (Wehave seen in it two dimensions, but it 
an be done in any dimension). Is this the right order ofmagnitude? Can we get a polynomial 
ompression of the tubes' volume?Conje
ture 1 (Kakeya) For any ǫ > 0, any Kakeya set of tubes {Ti} ⊆ R

n satis�es |∪Ti| > cǫN
n−ǫ(that is, polynomial 
ompression is impossible)Re
all the �nite �eld version of the Kakeya problem:Theorem 2 A Kakeya set K ⊆ F

n
q has at least cnqn elements (where in F

n
q , a set is Kakeya if it
ontains a line in every dire
tion).The �nite �eld version is analogous to the Kakeya 
onje
ture if you think of q ∼ N , whi
h makessense be
ause lines in F

n
q have length q, and a set that 
ontains a line in ea
h dire
tion should have

∼ qn−1 lines. In fa
t it is even more 
losely related to the Segment Version of the Kakeya problem,in whi
h K ⊆ R
n is a set that 
ontains a unit line segment in ea
h dire
tion (and the volume isrepla
ed by Hausdor� dimension).Besi
ovit
h showed that there exist {Ki} with m(Ki) → 0 (where m denotes measure), or thereexists K with m(K) = 0 (His 
onstru
tion implies the former).In terms of Hausdor�-dimension, the Kakeya 
onje
ture is:Conje
ture 3 (Hausdor�-dimension Kakeya) For any ǫ > 0, H-dim(K) ≥ n − ǫ.The Hausdor�-dimension 
onje
ture implies the tube version 
onje
ture. From now on we willdis
uss the tube version be
ause it is more natural and less involved.2 What Is Known?

• The Kakeya 
onje
ture is true in two dimensions.The �avour of the argument is as follows: For any two tubes 
orresponding to angles θ1, θ2,the volume of their overlap area is . 1

|θ1−θ2|
. Hen
e

∫
|
∑

i

χTi
|2 =

∑
i

∑
j

∫
χTi

· χTj
=

∑
i

∑
j

|Ti ∩ Tj | . (logN)2N2 (1)Now by the Cau
hy-S
hwartz inequality we have
N2 =

∫
(
∑

i

χTi
) · 1 ≤ (

∫
|
∑

i

χTi
|2)

1
2 · | ∪ Ti|

1
2 . logN · N · | ∪ Ti|

1
2 (2)Rearranging, we see that | ∪ Ti| & N2(logN)−some power, as desired.1



Conje
ture 4 (Lp version)
∫

|
∑

i

χTi
|p . N ǫ · (what happens when all tubes are centered at 0) (3)This implies the volume version of the Kakeya problem by the same argument as above.

• Using the Bush/Hairbrush Arguments.In the �nite �eld setting, the bush argument shows that |K| & q
n+1

2 , while in R
n it shows that

| ∪ Ti| & N
n+1

2 .In the �nite �eld setting, the hairbrush argument shows that |K| & q
n+2

2 , while in R
n it showsthat | ∪ Ti| & N

n+2

2 .More 
on
retely: when applying the bush argument in R
n, tubes with a small angle betweenthem may overlap a lot. However, if we look at a distan
e say > N

10
from the interse
tion pointof all the tubes in the bush, then the tubes don't overlap a lot any more and we 
an use thebush argument to get |bush| & N · (#tubes in the bush).In the hairbrush argument, we 
onsider ea
h plane separately. As in the bush argument, weneed to look at a distan
e > N

10
from the 
entral axis of the hairbrush. Only here there mightbe a problem with tubes that are at a small angle from the 
entral axis tube. In the mid 90's,Wol� was able to solve that problem and prove that | ∪ Ti| & N

n+2

2 .
• In 3 dimensions, the hairbrush argument gives | ∪ Ti| & N

5
2 . The best known result today is

| ∪ Ti| & N
5
2
+10

−10 (this is a result of Katz-Laba-Tao from ∼2000, with minor assumptionsabout the Kakeya set).
• Wol� 
ame up with some toy problems:� The �nite �eld Kakeya problem� Lines in di�erent dire
tions in the plane (pretty easy), whi
h led him to 
onsider 
ir
lesof di�erent radii in the plane.He used in
iden
e geometry methods su
h as the 
ellular method and ideas related to theSzemeredy-Trotter theorem.3 Applying the Polynomial Method to the Kakeya ProblemRe
all the main ideas in the proof of the �nite �eld version: Let K ⊆ F

n
q be a Kakeya set, andsuppose |K| = qn−γ . Then1. Find a non-zero polynomial P that vanishes on K with deg(P ) . q1− γ

n .2. The stru
ture of K and the 
hoi
e of P imply that P vanishes at some other pla
es.3. Hen
e the non-zero polynomial P vanishes too mu
h ⇒ a 
ontradi
tion.Can we do something analogous to prove the Kakeya 
onje
ture in R
n?Let K ⊆ R

n be a Kakeya set of 1× N tubes {Ti}, and suppose |K| = Nn−γ . Let li be the 
ore lineof Ti (note that these lines may be disjoint even if the tubes overlap). The following are some ideasfrom the 
lass dis
ussion regarding the 
hoi
e of the polynomial P :1. Pi
k P that vanishes on {li}. 2



2. Pi
k P that vanishes on {∂Ti}. This will imply that P vanishes on the boundary of the in�nite
ontinuation of the tubes, and thus on an in�nite surfa
e (in fa
t, we know what P will haveto be - the produ
t of polynomials vanishing on the boundaries of the tubes). So the degreeof P will probably be very large, and this will not serve our purpose.3. Pi
k P su
h that Z(P ) (roughly) bise
ts ea
h tube.4. Pi
k P su
h that Z(P ) interse
ts or bise
ts ea
h 
ross-se
tion of the tubes. This 
ould be ni
e(for a start, it is well de�ned), but it 
onsists of in�nitely many 
onditions on P , so it mightbe hard to satisfy.5. Pi
k P su
h that P is small on K (not ne
essarily 0), but with some normalization su
h as
sup(|coef(P )|) = 1.6. (Following idea 4) Consider 1×1× ...×1 
ubes in ∪Ti and have Z(P ) bise
t ea
h one of them.7. Even better - have Z(P ) bise
t latti
e 
ubes that are 
ompletely 
ontained in ∪Ti. We 
an
onsider latti
e 
ubes of size ∼ 2−n, so that ea
h tube will 
ontain a lot of them. In that 
ase,the number of 
ubes we want to bise
t is ∼ Nn−γ (whi
h is the volume of K). We 
an usethe Polynomial Ham Sandwi
h Theorem to �nd su
h a polynomial P with deg(P ) . N1− γ

n ,so this 
ould be an analogue for step 1 of the �nite �eld proof. However, it is un
lear whetherwe 
an have an analogue of step 2 here - 
an we use the fa
t that Z(P ) bise
ts ea
h 
ube inthe tubes to say anything about the behaviour of P in another 
ube?We 
ould pi
k a line l in a tube. Note that l 
ould be disjoint from Z(P ), but optimisti
allywe 
ould have |l ∩Z(P )| = cN , so that P must vanish on l. To make this happen, perhaps we
ould 
hoose l randomly among parallel lines in the tube. In the next le
ture, we will try todevelop this idea.
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