THE KAKEYA PROBLEM

1 Introduction

Consider cylinders T; C R™ of length N and radius 1. {T;} is a Kakeya set of tubes if {v(T};)} are
+-separated and %-dense in S"~!, where v(T}) is a unit vector “in the direction of the tube 7}".
Note that this implies that the number of tubes should be ~ N1,

The main question that concerns us is: How small can | U T;| be?

In the previous lecture we have seen Besicovitch’s construction, in which | U T;| ~ ﬁ - N™ (We
have seen in it two dimensions, but it can be done in any dimension). Is this the right order of

magnitude? Can we get a polynomial compression of the tubes’ volume?

Conjecture 1 (Kakeya) For any e > 0, any Kakeya set of tubes {T;} C R" satisfies |UT;| > c.N™ ¢
(that is, polynomial compression is impossible)

Recall the finite field version of the Kakeya problem:

Theorem 2 A Kakeya set K C Fy has at least c,q" elements (where in ¥y, a set is Kakeya if it
contains a line in every direction).

The finite field version is analogous to the Kakeya conjecture if you think of ¢ ~ N, which makes
sense because lines in Fj have length ¢, and a set that contains a line in each direction should have
~ ¢" ! lines. In fact it is even more closely related to the Segment Version of the Kakeya problem,
in which K C R™ is a set that contains a unit line segment in each direction (and the volume is
replaced by Hausdorff dimension).

Besicovitch showed that there exist {K;} with m(K;) — 0 (where m denotes measure), or there
exists K with m(K) = 0 (His construction implies the former).
In terms of Hausdorff-dimension, the Kakeya conjecture is:

Conjecture 3 (Hausdorff-dimension Kakeya) For any € > 0, H-dim(K) > n —e.

The Hausdorff-dimension conjecture implies the tube version conjecture. From now on we will
discuss the tube version because it is more natural and less involved.

2 What Is Known?

e The Kakeya conjecture is true in two dimensions.
The flavour of the argument is as follows: For any two tubes corresponding to angles 64, 65,
the volume of their overlap area is < wl—iez‘. Hence
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Now by the Cauchy-Schwartz inequality we have
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Rearranging, we see that | U T;| = N%(logIN)~seme power ' ag desired.
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Conjecture 4 (LP version)
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P < N€- (what happens when all tubes are centered at 0) (3)

This implies the volume version of the Kakeya problem by the same argument as above.

e Using the Bush/Hairbrush Arguments.

In the finite field setting, the bush argument shows that |K| = ¢"%, while in R™ it shows that
|UTy| > N*.
In the finite field setting, the hairbrush argument shows that |K| > ¢"%", while in R™ it shows

that |U T} > N"2".

More concretely: when applying the bush argument in R", tubes with a small angle between
them may overlap a lot. However, if we look at a distance say > % from the intersection point
of all the tubes in the bush, then the tubes don’t overlap a lot any more and we can use the
bush argument to get |bush| = N - (#tubes in the bush).

In the hairbrush argument, we consider each plane separately. As in the bush argument, we
need to look at a distance > % from the central axis of the hairbrush. Only here there might
be a problem with tubes that are at a small angle from the central axis tube. In the mid 90’s,

n+2

Wolff was able to solve that problem and prove that |UT;| 2 N 2 .

e In 3 dimensions, the hairbrush argument gives |UT;| 2 N 3. The best known result today is
|UT;| 2 N&+107% (this is a result of Katz-Laba-Tao from ~2000, with minor assumptions
about the Kakeya set).

e Wolff came up with some toy problems:

— The finite field Kakeya problem

— Lines in different directions in the plane (pretty easy), which led him to consider circles
of different radii in the plane.

He used incidence geometry methods such as the cellular method and ideas related to the
Szemeredy-Trotter theorem.

3 Applying the Polynomial Method to the Kakeya Problem

Recall the main ideas in the proof of the finite field version: Let K C Fj be a Kakeya set, and
suppose |K| = ¢" 7. Then

1. Find a non-zero polynomial P that vanishes on K with deg(P) < ¢'~=.
2. The structure of K and the choice of P imply that P vanishes at some other places.
3. Hence the non-zero polynomial P vanishes too much = a contradiction.

Can we do something analogous to prove the Kakeya conjecture in R™?
Let K C R™ be a Kakeya set of 1 x N tubes {T;}, and suppose |K| = N™~7. Let l; be the core line
of T; (note that these lines may be disjoint even if the tubes overlap). The following are some ideas
from the class discussion regarding the choice of the polynomial P:

1. Pick P that vanishes on {l;}.



. Pick P that vanishes on {0T;}. This will imply that P vanishes on the boundary of the infinite
continuation of the tubes, and thus on an infinite surface (in fact, we know what P will have
to be - the product of polynomials vanishing on the boundaries of the tubes). So the degree
of P will probably be very large, and this will not serve our purpose.

. Pick P such that Z(P) (roughly) bisects each tube.

. Pick P such that Z(P) intersects or bisects each cross-section of the tubes. This could be nice
(for a start, it is well defined), but it consists of infinitely many conditions on P, so it might
be hard to satisfy.

. Pick P such that P is small on K (not necessarily 0), but with some normalization such as
sup(lcoe f(P)]) = 1.

. (Following idea 4) Consider 1 x 1 X ... x 1 cubes in UT; and have Z(P) bisect each one of them.

. Even better - have Z(P) bisect lattice cubes that are completely contained in UT;. We can
consider lattice cubes of size ~ 27", so that each tube will contain a lot of them. In that case,
the number of cubes we want to bisect is ~ N™~7 (which is the volume of K). We can use
the Polynomial Ham Sandwich Theorem to find such a polynomial P with deg(P) < N'~#,
so this could be an analogue for step 1 of the finite field proof. However, it is unclear whether
we can have an analogue of step 2 here - can we use the fact that Z(P) bisects each cube in
the tubes to say anything about the behaviour of P in another cube?

We could pick a line [ in a tube. Note that ! could be disjoint from Z(P), but optimistically
we could have |l N Z(P)| = ¢N, so that P must vanish on [. To make this happen, perhaps we
could choose [ randomly among parallel lines in the tube. In the next lecture, we will try to
develop this idea.



