
THE KAKEYA PROBLEM
1 IntrodutionConsider ylinders Ti ⊆ R

n of length N and radius 1. {Ti} is a Kakeya set of tubes if {v(Ti)} are
1

N
-separated and 2

N
-dense in Sn−1, where v(Ti) is a unit vetor �in the diretion of the tube Ti�.Note that this implies that the number of tubes should be ∼ Nn−1.The main question that onerns us is: How small an | ∪ Ti| be?In the previous leture we have seen Besiovith's onstrution, in whih | ∪ Ti| ∼

1

logN
· Nn (Wehave seen in it two dimensions, but it an be done in any dimension). Is this the right order ofmagnitude? Can we get a polynomial ompression of the tubes' volume?Conjeture 1 (Kakeya) For any ǫ > 0, any Kakeya set of tubes {Ti} ⊆ R

n satis�es |∪Ti| > cǫN
n−ǫ(that is, polynomial ompression is impossible)Reall the �nite �eld version of the Kakeya problem:Theorem 2 A Kakeya set K ⊆ F

n
q has at least cnqn elements (where in F

n
q , a set is Kakeya if itontains a line in every diretion).The �nite �eld version is analogous to the Kakeya onjeture if you think of q ∼ N , whih makessense beause lines in F

n
q have length q, and a set that ontains a line in eah diretion should have

∼ qn−1 lines. In fat it is even more losely related to the Segment Version of the Kakeya problem,in whih K ⊆ R
n is a set that ontains a unit line segment in eah diretion (and the volume isreplaed by Hausdor� dimension).Besiovith showed that there exist {Ki} with m(Ki) → 0 (where m denotes measure), or thereexists K with m(K) = 0 (His onstrution implies the former).In terms of Hausdor�-dimension, the Kakeya onjeture is:Conjeture 3 (Hausdor�-dimension Kakeya) For any ǫ > 0, H-dim(K) ≥ n − ǫ.The Hausdor�-dimension onjeture implies the tube version onjeture. From now on we willdisuss the tube version beause it is more natural and less involved.2 What Is Known?

• The Kakeya onjeture is true in two dimensions.The �avour of the argument is as follows: For any two tubes orresponding to angles θ1, θ2,the volume of their overlap area is . 1

|θ1−θ2|
. Hene

∫
|
∑

i

χTi
|2 =

∑
i

∑
j

∫
χTi

· χTj
=

∑
i

∑
j

|Ti ∩ Tj | . (logN)2N2 (1)Now by the Cauhy-Shwartz inequality we have
N2 =

∫
(
∑

i

χTi
) · 1 ≤ (

∫
|
∑

i

χTi
|2)

1
2 · | ∪ Ti|

1
2 . logN · N · | ∪ Ti|

1
2 (2)Rearranging, we see that | ∪ Ti| & N2(logN)−some power, as desired.1



Conjeture 4 (Lp version)
∫

|
∑

i

χTi
|p . N ǫ · (what happens when all tubes are centered at 0) (3)This implies the volume version of the Kakeya problem by the same argument as above.

• Using the Bush/Hairbrush Arguments.In the �nite �eld setting, the bush argument shows that |K| & q
n+1

2 , while in R
n it shows that

| ∪ Ti| & N
n+1

2 .In the �nite �eld setting, the hairbrush argument shows that |K| & q
n+2

2 , while in R
n it showsthat | ∪ Ti| & N

n+2

2 .More onretely: when applying the bush argument in R
n, tubes with a small angle betweenthem may overlap a lot. However, if we look at a distane say > N

10
from the intersetion pointof all the tubes in the bush, then the tubes don't overlap a lot any more and we an use thebush argument to get |bush| & N · (#tubes in the bush).In the hairbrush argument, we onsider eah plane separately. As in the bush argument, weneed to look at a distane > N

10
from the entral axis of the hairbrush. Only here there mightbe a problem with tubes that are at a small angle from the entral axis tube. In the mid 90's,Wol� was able to solve that problem and prove that | ∪ Ti| & N

n+2

2 .
• In 3 dimensions, the hairbrush argument gives | ∪ Ti| & N

5
2 . The best known result today is

| ∪ Ti| & N
5
2
+10

−10 (this is a result of Katz-Laba-Tao from ∼2000, with minor assumptionsabout the Kakeya set).
• Wol� ame up with some toy problems:� The �nite �eld Kakeya problem� Lines in di�erent diretions in the plane (pretty easy), whih led him to onsider irlesof di�erent radii in the plane.He used inidene geometry methods suh as the ellular method and ideas related to theSzemeredy-Trotter theorem.3 Applying the Polynomial Method to the Kakeya ProblemReall the main ideas in the proof of the �nite �eld version: Let K ⊆ F

n
q be a Kakeya set, andsuppose |K| = qn−γ . Then1. Find a non-zero polynomial P that vanishes on K with deg(P ) . q1− γ

n .2. The struture of K and the hoie of P imply that P vanishes at some other plaes.3. Hene the non-zero polynomial P vanishes too muh ⇒ a ontradition.Can we do something analogous to prove the Kakeya onjeture in R
n?Let K ⊆ R

n be a Kakeya set of 1× N tubes {Ti}, and suppose |K| = Nn−γ . Let li be the ore lineof Ti (note that these lines may be disjoint even if the tubes overlap). The following are some ideasfrom the lass disussion regarding the hoie of the polynomial P :1. Pik P that vanishes on {li}. 2



2. Pik P that vanishes on {∂Ti}. This will imply that P vanishes on the boundary of the in�niteontinuation of the tubes, and thus on an in�nite surfae (in fat, we know what P will haveto be - the produt of polynomials vanishing on the boundaries of the tubes). So the degreeof P will probably be very large, and this will not serve our purpose.3. Pik P suh that Z(P ) (roughly) bisets eah tube.4. Pik P suh that Z(P ) intersets or bisets eah ross-setion of the tubes. This ould be nie(for a start, it is well de�ned), but it onsists of in�nitely many onditions on P , so it mightbe hard to satisfy.5. Pik P suh that P is small on K (not neessarily 0), but with some normalization suh as
sup(|coef(P )|) = 1.6. (Following idea 4) Consider 1×1× ...×1 ubes in ∪Ti and have Z(P ) biset eah one of them.7. Even better - have Z(P ) biset lattie ubes that are ompletely ontained in ∪Ti. We anonsider lattie ubes of size ∼ 2−n, so that eah tube will ontain a lot of them. In that ase,the number of ubes we want to biset is ∼ Nn−γ (whih is the volume of K). We an usethe Polynomial Ham Sandwih Theorem to �nd suh a polynomial P with deg(P ) . N1− γ

n ,so this ould be an analogue for step 1 of the �nite �eld proof. However, it is unlear whetherwe an have an analogue of step 2 here - an we use the fat that Z(P ) bisets eah ube inthe tubes to say anything about the behaviour of P in another ube?We ould pik a line l in a tube. Note that l ould be disjoint from Z(P ), but optimistiallywe ould have |l ∩Z(P )| = cN , so that P must vanish on l. To make this happen, perhaps weould hoose l randomly among parallel lines in the tube. In the next leture, we will try todevelop this idea.
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