
THE KAKEYA PROBLEM

In this lecture, we will discuss Kakeya Conjecture and some known results about
it.

Definition Suppose that Ti ⊂ R
n are tubes of length N and radius 1. {Ti} is a

Kakeya set of tubes if {V (Ti)} is 1

N
-separated and 2

N
-dense in Sn−1, where V (Ti) is

the unit vector of direction of the tube Ti.

Our question is: how small can | ∪ Ti| be?
Recall that last time we gave the ”Besicovitch arrangement of tubes” where we

managed to compress the volume of ∪Ti by a factor of log N . We got that arrange-
ment by translating the tubes in a certain way, without performing any rotation. We
want to know whether there is a better compression.

Kakeya Conjecture(tube version). For any Kakeya set of tubes Ti ⊂ R
n, | ∪ Ti| >

Cǫ · N
n−ǫ ( ∀ǫ > 0 ).

We also have:

Kakeya Conjecture(segment version). For any Kakeya set K(a set of points that
contains a unit line segment in every direction) in R

n, H-dim(K) > n − ǫ, where
H-dim(K) is the Hausdorff dimension of K and ǫ is any positive number.

Notice that the segment version will imply the tube version. The tube version has
a combinatorial flavor since it involves how tubes can overlap each other.

1. the 2D case

Proposition. The Kakeya Conjecture(tube version) is true in dimension two.

Now we sketch the proof here. The flavor is similar to the finite field Kakeya
problem.

We denote by θi the angle between V (Ti) and the x-axis. Then the overlapping
area of T1 and T2 can be bounded by 1

|θ1−θ2|
. Then we get

∫
|
∑

χTi
|2 =

∑ ∑ ∫
χTi

χTj
=

∑ ∑
|Ti ∩ Tj| . | log N |N2

By Cauchy-Schwarz inequality, we have N2 =
∫

(
∑

χTi
) 6 (

∫
|
∑

χTi
|2)

1

2 · | ∪ Ti|
1

2 .
Thus | ∪ Ti| & N2(log N)−1.

Conjecture(Lp version).
∫
|
∑

χTi
|p . N ǫ·(what happens if all tubes are centered at zero)

This will imply the Kakeya Conjecture(tube version) by a similar argument.
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2. bush argument and hair brush argument

• Bush argument: We have |K| & q
n+1

2 for a Kakeya set K ⊂ F
n
q and | ∪ Ti| &

N
n+1

2 for a Kakeya set of tubes Ti ⊂ R
n

We have already seen how Bush argument works in the finite field case.
For the tube version the similar argument works too.

Suppose |∪Ti| is small, then there must be a point that is covered by many
tubes. Those tubes might have a large overlapping area around that point,
but if we consider what happens in a distance of N

10
from that point, then we

see the volume of the bush is bigger than N · (the number of tubes in the bush)

• Hair Brush argument: We have |K| & q
n+2

2 for a Kakeya set K ⊂ F
n
q and

| ∪ Ti| & N
n+2

2 for a Kakeya set of tubes Ti ⊂ R
n

In the finite field case, this argument goes like to choose the line that has
the biggest number of intersection with other lines and consider all lines that
intersect it. This will give us the bound. However it is much trickier to get
the bound for the tube version: when we consider what happens in a distance
of N

10
from our chosen tube, it turns out that tubes that have small angle to

the chosen tube might not even make it out that distance. It is possible,
though not easy, to rule out such cases and get the desired bound as was
shown by Thomas Wolff in the 90s.

In 3D, the Hair Brush argument gives | ∪ Ti| & N
5

2 . It is surprisingly hard to
improve this bound. Katz-Laba-Tao, under a minor assumption about K, improved
the bound to something like N

5

2
+10−10

. Being stuck at this point, Thomas Wolff
proposed some toy problems:

• Finite field Kakeya problem. People think that passing from R
n to F

n
q might

make the problem a little bit easier while still preserving some of the flavor,
as is shown in the hair brush argument.

• Instead of considering tubes in different directions, we can take annuli with
thickness 1

N
and radii between 1 and 2. In order to solve that, he used

incidence geometry, stuff related to Szemerédi-Trotter theorem. That was
cool because it brought a whole different set of techniques to this area, so
people in harmonic analysis learned about this area of mathematics.

3. polynomial method for tube version kakeya problem

Since we have already seen the elegant proof of finite field Kakeya problem us-
ing polynomial method, can we say anything about the tubes by using polynomial
method?
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Let us recall the main ideas we used when we solved the finite field Kakeya problem:

(1) Look at the polynomial P that vanishes on K with smallest degree. The
degree would be significantly smaller than q.

(2) P must vanish at some other places, then we have contradiction.

Now let us see what happens for tubes. Suppose K is a Kakeya set of 1×N tubes
Ti ⊂ R

n, |K| = Nn−γ . Here are some ideas:

• Look at the polynomial P that vanishes at all core lines with smallest degree.
But those lines can be all disjoint. Even if they are not, we can make a small
perturbation to make them so.

• Look at the polynomial P that vanishes on ∂Ti. Then P = 0 on the infinite
surfaces. But the degree of P would be very big.

• Instead of vanishing, P is just small on ∪Ti, with some normalization.
• Z(P ) bisects each tube. If it does it by cutting tubes at their mid-points,

then there is not much information. We would like it to cut tubes along their
core lines, but it seems that by requiring so we are putting infinitely many
conditions on our polynomial.

• Z(P ) bisects each lattice cubes with size 1

100
that overlaps our tubes. The

polynomial ham sandwich theorem allows us to find one with degree . N1− γ

n .
Now our question is: does such a polynomial necessarily bisect some other
cubes?

We will see what we should do next in the last class on Wednesday.


