
OSCILLATING INTEGRALS AND THE KAKEYA PROBLEM

1. The ball multiplier in Fourier analysis

We give a little background in Fourier analysis.
The Fourier transform in R

n is defined by

f̂(ω) =

∫

Rn

f(x)e−2πiωxdx.

In this short background section, we will assume that f is continuous and com-
pactly supported. With these assumptions, the integral above is clearly defined. A
function can be recovered from its Fourier transform as follows:

Proposition 1.1. If f is a smooth compactly supported function, then

f(x) =

∫

Rn

f̂(ω)e2πiωxdω.

As long as f is C∞ smooth, f̂ decays rapidly, and this integral is defined. If f is
just continuous with compact support, then f̂ is a continuous function, but it may
not be integrable. In this case, it requires thought to understand what the right-hand
side should mean. Partly for this reason, Fourier analysts considered integrating just
over a ball:

MRf(x) :=

∫

Bn(R)

f̂(ω)e2πiωxdω.

If f is continuous with compact support, then MRf is well defined for any finite
R. It is natural to ask whether MRf converges to f as R → ∞. Here are some
fundamental results about this question.

• At a particular point x, MRf(x) may not converge at all. (19th century)
• The functions MRf converge to f in L2 (in every dimension). (One of the

motivations for defining L2 convergence in the early 20th century)
• If n = 1, then MRf converges to f in Lp for every 1 < p < ∞. (Riesz, early

20th century.)

Question: For a given dimension n, for which p do we have MRf → f in Lp for all
f ∈ C0

comp?
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The operators MR are all in a family, and if one gets a good understand of M1,
then by rescaling one can also get a good understanding of any MR. By standard
analysis tricks, this question is equivalent to the following:

Question: For a given dimension n, for which p do we have ‖M1f‖p . ‖f‖p?

2. Oscillating kernels

Last time we considered the kernel Kα(x) := |x|−α. Now we consider an oscillating
version of this kernel.

K̃α(x) := [1 + |x|]−α cos |x|.

The function K̃α(x) is still radial. Near the origin, it’s bounded instead of having
a sharp peak. Also, it oscillates with the radius, so that it has positive and negative
parts. If one dropped a stone into a pond and looked at the ripples, the shape would
be a little bit like K̃α, with a modest peak in the center, and then waves going
outward and getting smaller the farther they are from the center.

We define T̃αf := f ∗ K̃α.
The operator M1 turns out to be very similar to T̃n+1

2

. Although they are not

exactly equal, all the arguments that we will make about T̃n+1

2

apply just as well to

M1. From now on, we’ll just talk about T̃α.
Our main question is the following, what are all the Lp estimates obeyed by T̃α?
At first sight, this problem looks like a small variation on the Hardy-Littlewood-

Sobolev problem - it’s just a similar kernel with some oscillations added. Because
of the oscillations, there are positive and negative terms in the integrals, and some
cancellation occurs. The key issue is to understand how much cancellation needs to
occur.

We will focus on estimates of the form ‖Tαf‖p . ‖f‖p, so that we have less
parameters to keep track of. (Lp − Lq estimates are interesting too, but all of the
essential issues already appear in this main case.)

Example 1. We let f = χBr
for some r. It’s already somewhat complicated to

estimate T̃αf because of the cancellation in the integral. But if f is < 1/100, then
at most points x, there is no cancellation in the integral

T̃αf(x) =

∫

B(r)

[1 + |x − y|]−α cos |x − y|dy.

The most interesting is to take r = 1/100. In this case, T̃αf ∼ K̃α. In this case,
we have ‖f‖p ∼ 1, and

∫

|T̃αf |p ∼
∫

Rn(1 + |x|)−αp. So ‖T̃αf‖p < ∞ iff αp > n.
Considering r ≤ 1/100 just gives the same information.
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Example 2. (Focusing example) For large r, there is something better to do than

χBr
. Suppose that we want to make T̃αf(0) large. Let’s write it out as an integral:

T̃αf(0) =

∫

Rn

f(y)[1 + |y|]−αcos|y|dy.

If we choose f carefully, then all the contributions in the integral are positive,
instead of cancelling each other. This motivates choosing f2 = χBr

sign(cos|y|), for

some large r ≥ 1. We have ‖f2‖p = rn/p. We also have |T̃αf2(0)| ∼ rn−α. In fact,

for all |x| < 1/100, we have |T̃αf2(x)| ∼ rn−α. Therefore, ‖T̃αf2‖p & rn−α. So

‖T̃αf2‖p . ‖f2‖p iff n/p ≥ n − α.
In summary, we have the following proposition.

Proposition 2.1. If ‖T̃αf‖p . ‖f‖p for all the examples above, then

n

α
< p ≤

n

n − α
.

Exercise. Being a little more clever/careful in Example 2., we can get eliminate
the upper endpoint. If ‖T̃αf‖p . ‖f‖p for all f , then

n

α
< p <

n

n − α
.

(If n/p = n − α, we can consider f3 = χBr
K̃n−α. This rules out the endpoint,

leaving only n/p > n − α.)
If particular, if α = (n + 1)/2, then we have a bound on all examples provided

that 2n
n+1

< p < 2n
n−1

. This was the situation until the early 70’s.

3. Examples shaped like tubes

There is another important example in the theory of these operators: an oscillating
function supported on a long thin tube.

Let T be a cylinder of length L >> 1 and radius (1/1000)L1/2. The cylinder may
point in any direction. Let vT be a unit vector parallel to the axis of the cylinder.
Let fT be the function

fT (x) := χT (x)ei(vT ·x).

We want to understand T̃αfT . Let T+ denote the cylinder we get by translating T
by 2LvT . The most interesting part is the behavior of T̃αfT on T+. Consider a point
x in T+.

T̃αfT (x) =

∫

T

|x − y|α cos |x − y|ei(vt·y)dy.
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Now the key point is that the oscillations of ei(vt·y) and the oscillations of cos |x−y|
are in sync on T . Let’s consider the set where eivt·y is equal to 1 – this set is the set of
peaks of the real part of the wave eivt·y. We have eivt·y = 1 when vt · y = 2πn, n ∈ Z.
This set is a union of parallel planes, perpendicular to the axis of T with spacing 2π
between them. The peaks of the wave cos|x− y| occur at |x − y| = 2πn, on spheres
around x with radius 2πn. But inside of the tube T , each sphere looks almost like a
plane. It’s a good idea at this point to draw a picture of the level sets of vt · y and
of |x − y| inside of T . Because of this, the two waves interfere constructively. Let’s
examine the situation more computationally now.

The vector x − y is nearly parallel to vt. The vt component of x − y is ∼ L, and
the perpendicular component is ≤ (1/1000)L1/2. By the Pythagorean theorem, we
have

(vt · x − vt · y)2 − 10−4L ≤ |x − y|2 ≤ (vt · x − vt · y)2 + 10−6L

Since |vt · x − vt · y| ≥ L/4, we see that

|x − y| − |vt · x − vt · y| ≤ 10−5.

Therefore, up to a small error, we have

T̃αfT (x) =

∫

T

|x − y|α cos(vt · x − vt · y)ei(vt·y)dy + small error.

Expanding cos a = (1/2)(eia + e−ia), we get

T̃αfT (x) = (1/2)eivt·x

∫

T

|x− y|−αdy +(1/2)e−ivt·x

∫

T

|x− y|−αe2ivt·ydy + small error.

The first integral is the main term. There’s lots of cancellation in the second
integral, so it’s much smaller. The error term is bounded by

∫

T
|x − y|−α10−5dy, so

it’s much smaller than the main term.
The volume of T is ∼ L

n+1

2 , and |x− y| ∼ L, so the main term has size ∼ L
n+1

2
−α.

Proposition 3.1. If fT and T+ are defined as above, then for every x ∈ T+ we have

|T̃αfT (x)| & L
n+1

2
−α.

Corollary 3.2. If α < n+1
2

, then there are no bounds of the form ‖T̃αf‖p . ‖f‖p.

Proof. Notice that T+ has the same size as T . The function fT has size ∼ 1 and
support on T . If α < n+1

2
, then the function T̃αfT has size >> 1 on T+. So

‖T̃αfT‖p ∼ L
n+1

2
−α‖fT‖p. �
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This type of example appears in a number of linear operators besides T̃α. There
are similar examples connected to the wave equation. It takes some work to write
them down precisely, but we can give some feel for it just in words. Imagine an
airplane traveling at the speed of sound. The path of the airplane in space-time is
like a long thin tube. The engine of the plane vibrates, making sound waves, and
these sound waves travel at the same speed as the airplane. The airplane can feel
dramatically stronger sound waves than it would have felt at a lower or higher speed.
Even if the airplane turns off the engine, there will still be strong sound waves in
the plane for some time. The action of the engine occurs on one tube in space time,
and the resulting sound waves have large amplitude on a longer tube. Although the
operator T̃α is not an accurate model for sound waves, the mathematical issues in
understanding it are similar with those in the wave equation.

We now return to our operators T̃α. For α ≥ (n + 1)/2, we have ‖T̃αfT‖p . ‖fT‖p

for all p. In particular, the ball multiplier M1 is similar to T̃(n+1)/2, and we have
‖M1fT‖p ∼ ‖fT‖p for all p as well. So this example does not give any new information
about the ball multiplier. For all the examples we have considered so far, we have

‖M1f‖p . ‖f‖p, for all
2n

n + 1
< p <

2n

n − 1
.

Until the early 70’s, it was generally believed that these inequalities were true.
The only case that was proven was p = 2. In “The multiplier problem for the ball”,
Charles Fefferman proved that these inequalities are false for all p 6= 2. (The paper
appeared in Ann. of Math. (2) 94 (1971), 330-336). These counterexamples are
given by arranging many tubes in a remarkable pattern found by Besicovitch.

4. Sums of many tubes

Let us consider a function f =
∑

i fTi
over many tubes Ti. Then we have T̃αf =

∑

i T̃αfTi
. Schematic picture: draw some tubes Ti in blue, and T+

i in red. For
example, Ti may be disjoint and T+

i may intersect.
In the 1920’s, Besicovitch constructed an arrangement of tubes so that Ti are

disjoint and T+
i intersect a lot.

Theorem 4.1. (Besicovitch, 1920’s) Fix a dimension n ≥ 2. For any L ≥ 1, there
is a finite set of disjoint tubes Ti (with length L and radius ∼ (1/1000)L1/2), with
the property that

| ∪i T+
i | . (log L)−1| ∪i Ti|.

We’ll prove Besicovitch’s theorem next class (or maybe something a touch weaker).
The key point for the moment is that (log L)−1 can be arbitrarily small.
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Let f =
∑

i fTi
, where the Ti are the tubes in Besicovitch’s construction. How

big is T̃(n+1)/2f? Suppose that x lies in A tubes T+
i . We have a sum of A terms of

size ∼ 1, but these terms are complex numbers that may point in any direction. We
would actually have to be quite lucky if the sum of A terms had size ∼ A. The sum
of A random numbers |z| ≤ 1 has size ∼ A1/2. So we should expect something more
like

|T̃(n+1)/2f(x)| ∼

(

∑

i

|T̃(n+1)/2fTi
(x)|2

)1/2

(∗).

In fact, if we define fran =
∑

i ±fTi
with random ± signs, then (*) is true with

very high probability.

Proposition 4.2. If gi are any functions, then with high probability,

‖
∑

i

±gi‖p ∼ ‖(
∑

i

|gi|
2)1/2‖p.

We defer this – the probability argument is similar to one earlier in the course.
With these tools in hand, we can understand ‖fran‖p and ‖T̃αfran‖p.

Corollary 4.3. If Ti is any set of tubes, and fran :=
∑

i ±fTi
, then with high proba-

bility

‖fran‖p ∼ ‖(
∑

i

χ2
Ti

)1/2‖p ∼ ‖
∑

i

χTi
‖

1/2
p/2.

In Besicovitch’s example, the tubes Ti are disjoint, and so ‖fran‖p ∼ | ∪ Ti|
1/p.

Corollary 4.4. If Ti is any set of tubes of length L, and fran =
∑

i ±fTi
, then with

high probability

‖T̃αfran‖p & L
n+1

2
−α‖

∑

i

χT+

i
‖

1/2
p/2.

In Besicovitch’s example,
∑

i χT+

i
is supported on a set of measure . (log L)−1| ∪i

Ti|, and so its average height is & log L. Therefore, for q > 1, its Lq norm is
& (log L)q(log L)−1| ∪i Ti|, and we get

‖T̃αfran‖p & L
n+1

2
−α(log L)

p−2

4 | ∪i Ti|
1/p.

We get

Theorem 4.5. (Fefferman 1971) If p > 2, then T̃(n+1)/2 is not bounded on Lp.
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Exercise. The operator T̃(n+1)/2 is also not bounded on Lp for p < 2. To see this,
choose Ti so that T+

i are disjoint and | ∪i T+
i | is much larger than | ∪i Ti|.

HLS problem: connected with how balls overlap in space
BR problem: connected with how tubes overlap in space.


