
THE FINITE-FIELD NIKODYM AND KAKEYA PROBLEMS

These notes are rougher than I would like, but they still have some main proofs.
Let F be a finite field with q elements. A set N ⊂ F n is called a (generalized)

Nikodym set, if for each point x ∈ F n, there is a line L(x) containing x so that
|L(x) ∩N | ≥ q/2. A trivial example of a Nikodym set is the entire set F n. Can one
find a significantly smaller Nikodym set?

Theorem 0.1. (Dvir) Any (generalized) Nikodym set in F n contains at least cnqn

elements.

Proof. Let V (d) be the vector space of degree d polynomials in n variables with
coefficients in F . We pick a polynomial P (not identically zero) that vanishes on
N with degree ≤ Cn|N |1/n. If this degree is < q/2, then P must vanish at every
point x ∈ F n. But a polynomial of degree ≤ q/2 cannot vanish at every point of F n

unless it vanishes identically. We conclude that the degree of P is at least q/2 and
so |N | ≥ C−1

n (q/2)n. �

(We used the following lemma. A polynomial P in n variables over F of degree
d < q cannot vanish at every point of F n unless each coefficient of P is zero.

proof by induction on n. The case n = 1 appears in Lecture 2.
Suppose P vanishes at each point of F n. Write P (x1, ..., xn) =

∑d
j=0

Pj(x1, ..., xn−1)x
d
n.

For each particular choice of x1, ..., xn−1, we know that P (x1, ..., xn) = 0 for all
xn ∈ F . Since d < q, we see that the coefficients Pj(x1, ..., xn−1) must vanish for
each j. Therefore Pj(x1, ..., xn−1) = 0 for each (x1, ..., xn−1) ∈ F n−1. By induction,
we see that the coefficients of Pj all vanish. But then the coefficients of P all vanish.)

Dvir also proved a small variation which is a tiny bit harder than the proof above.
A set K ⊂ F n is called a Kakeya set if it contains a line in every direction. In other
words, for every vector a ∈ F n \{0}, there is a vector b so that the line {at+b|t ∈ F}
is contained in K. A trivial example of a Kakeya set is the entire vector space F n.
Can one find a Kakeya set significantly smaller than this?

Theorem 0.2. A Kakeya set K ⊂ F n has at least cnq
n elements.

Proof. Let K be a Kakeya set. If K is smaller than the conclusion, let P be a
polynomial vanishing on K of degree < q. Let d be the degree of P . Write P = Pd+Q,
where Pd is the sum of monomials of degree d and Q is a polynomial of degree ≤ d−1.

Let a be any non-zero vector. Choose b so that the line {at+ b|t ∈ F} is contained
in K. Consider the polynomial in one variable R(t) := P (at + b). The polynomial
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R vanishes for each t ∈ F . It has degree ≤ d < q, and so its coefficeints all vanish.
In particular, its coefficient of degree d vanishes. But the coefficient of td in R is
exactly Pd(a). So we see that Pd(a) vanishes for all a ∈ F n \ {0}. But since the
degree of Pd is d < q, it easily follows that Pd vanishes at 0 also. Then we see that
Pd is identically zero, and we reach a contradiction. �

The Kakeya and Nikodym problems presented here are the analogues of deep open
problems in Euclidean space. A Kakeya set K ⊂ R

n is a set which contains a unit
line segment in each direction. For example, the ball of radius 1/2 is a Kakeya
set. Besicovitch constructed surprising examples of Kakeya sets with arbitrarily
small volume and even with measure 0. Besicovitch’s construction works in each
dimension n ≥ 2. Although his sets have measure zero, they all have full Hausdorff
dimension. The Kakeya conjecture is that every Kakeya set K ⊂ R

n has Hausdorff
dimension n.

It can be hard to appreicate the polynomial method proofs without some back-
ground trying to prove this type of result without it. We give two simple combina-
torial estimates for the size of a finite field Kakeya set K ⊂ F

n
q .

1. (Bush method) By pigeonholing, there is a point x ∈ K which lies in at least
qn/|K| lines of the Kakeya set. The union of all the lines of the Kakeya set thru a
given point is called a bush. All of these lines are disjoint except at x. Therefore,
the bush contains at least qn(q − 1)/|K| points. Since the bush is contained in K,

we see that |K| ≥ (1/2)q
n+1

2 .
2. (L2-method, or just counting) Consider the lines of K one at a time. The first

contains q points. The second must contain at least q−1 points not in the first. The
third must contain at least q − 2 points not in the first two, etc. Therefore, the first
q lines must contain at least (1/2)q2 distinct points. So |K| ≥ (1/2)q2.

Both these methods only use the fact that two distinct lines intersect in ≤ 1 point
and that a Kakeya set is the union of ≥ qn−1 distinct lines. In other words, we have
not used the fact that the lines point in different directions! However, there are q2

lines in a plane. In order to see that a Kakeya set in F
3 must contain q2+ǫ points,

we need to use that the lines point in different directions in order to rule out the
example that they all lie in a plane.


