
ANALYSIS AND COMBINATORICS

The last unit of the course will focus on the Kakeya problem. In this lecture,
we’ll give some background in analysis and look at how combinatorics interacts with
analysis.

1. The Loomis-Whitney inequality

The Loomis-Whitney inequality says that if the projections of a set U ⊂ Rn onto
the x⊥

j hyperplanes are small, then U itself is small. In this section we’ll see why
this is true from a combinatorial standpoint.

Consider the unit cubical lattice in Rn; i.e., the set of cubes {Qα}α∈Zn where
Qα = {x ∈ Rn : αi ≤ xi ≤ αi + 1 for all i}. Let X ⊂ {Qα}α∈Zn . Let πj be the
projection onto the x⊥

j hyperplane.

Theorem 1.1 (Loomis-Whitney, 1950’s). If |πjX| ≤ A for all j, then |X| . A
n

n−1 .

In fact, Loomis and Whitney’s proof gives |X| ≤ A
n

n−1 , with equality holding for
a cube. Their proof involves using Hölder’s inequality a lot. We’ll give a proof that
doesn’t achieve the sharp constant, but uses only combinatorics.

Define a column in the xj-direction to be the set of cubes along an xj-direction
line in the unit cubical lattice.

Lemma 1.2. If |πjX| ≤ B for all j, then there is a column with ≥ 1 and ≤ B
1

n−1

cubes of X.

Proof. Suppose every column contains 0 or > B
1

n−1 cubes of X. Let Q0 ∈ X and take

a column containing Q0 in the x1-direction; this column contains > B
1

n−1 cubes of X.
For each Q1 ∈ X in this column, take a column containing Q1 in the x2-direction so

that all of the new columns are parallel; we get an x1x2-plane which contains > B
2

n−1

cubes of X. For each cube in this plane, take parallel columns in the x3-direction,
and so on. We obtain an x1 . . . xn−1-plane with > B cubes of X, a contradiction. �

Corollary 1.3. If
∑

j|πjX| ≤ B, then |X| ≤ B
n

n−1 .

Proof. Induct on B. Obtain X ′ by removing from X a column which contains ≥ 1

and ≤ B
1

n−1 cubes of X. Then
∑

j|πjX
′| ≤ B−1, so by induction |X ′| ≤ (B−1)

n
n−1 .

Then |X| ≤ |X ′| + B
1

n−1 ≤ B
n

n−1 . �

Corollary 1.3 implies Theorem 1.1 when B = nA.
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Theorem 1.4 (Loomis-Whitney). If U is an open set in Rn with |πjU | ≤ A for all

j, then |U | . A
n

n−1 .

Proof. Approximate U by a union Uǫ ⊂ U of ǫ-cubes in an ǫ-lattice. By Theorem 1.1,
|Uǫ| . A

n
n−1 . Taking ǫ → 0 yields the result. �

Corollary 1.5 (Isoperimetric inequality). If U is a bounded open set in Rn, then

Voln U . (Voln−1 ∂U)
n

n−1 .

Proof. Since U is bounded, |πjU | ≤ Voln−1(∂U) for all j. �

2. The Sobolev inequality

Let u ∈ C1
comp(R

n); that is, u is a C1 real (or complex) valued function on R
n with

compact support. Given
∫

|∇u| = 1, how “big” can u be?
Recall that for p ≥ 1, the Lp norm is given by

‖u‖Lp =

(
∫

|u|p
)1/p

.

We’ll use the Loomis-Whitney inequality to prove the following important result.

Theorem 2.1 (Sobolev). ‖u‖
L

n
n−1

. ‖∇u‖L1.

Before proving this, let’s look at a measure of “bigness” related to the L
n

n−1 norm.
Let S(h) = {x ∈ R

n : |u(x)| > h}.

Proposition 2.2. If ‖u‖Lp ≤ M , then |S(h)| ≤ Mph−p.

Proof. Mp ≥
∫

|u|p ≥ hp|S(h)|. �

Lemma 2.3. If u ∈ C1
comp

(Rn), then |πjS(h)| ≤ h−1‖∇u‖L1.

Proof. Fix x ∈ S(h), and look at the line l through x in the xj direction. Since u
is compactly supported, u = 0 somewhere on l, so

∫

l
|∇u| ≥ h by the fundamental

theorem of calculus. Thus,

‖∇u‖L1 ≥

∫

πjS(h)×R

|∇u| =

∫

πjS(h)

∫

l

|∇u| ≥ |πjS(h)| · h.

�

Corollary 2.4. |S(h)| . h−
n

n−1‖∇u‖
n

n−1

L1 .

Proof. This follows from Loomis-Whitney. �

This is close to Theorem 2.1. To actually prove the theorem, we’ll need to deal
with the possibility of S(h) being small but u growing very quickly within S(h).
Luckily, we can do this without too much modification.
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Proof of Sobolev. Let Sk = {x ∈ Rn : 2k−1 ≤ |u(x)| ≤ 2k}.

Lemma 2.5. If u ∈ C1
comp

(Rn), then |πjSk| . 2−k
∫

Sk−1

|∇u|.

Proof. Fix x ∈ Sk, and look at the line l through x in the xj direction. Since
|u| ≤ 2k−2 somewhere on l and |u| ≥ 2k−1 somewhere on l, we have

∫

Sk−1∩l
|∇u| ≥

2k−1 − 2k−2 = 2k−2. Thus,
∫

Sk−1

|∇u| ≥

∫

πjSk−1

∫

Sk−1∩l

|∇u| ≥ |πjSk−1| · 2
k−2.

�

Corollary 2.6. |Sk| . 2−k· n
n−1

(

∫

Sk−1

|∇u|
)

n
n−1

.

Proof. This follows from Loomis-Whitney. �

Now, we have

∫

|u|
n

n−1 ∼

∞
∑

k=−∞

|Sk| · 2
−k· n

n−1 .

∞
∑

k=−∞

(

∫

Sk−1

|∇u|

)
n

n−1

≤

(
∫

|∇u|

)
n

n−1

as desired. �

3. Lp estimates of linear operators

Let’s do some background in analysis in preparation for the Kakeya problem.
Given f , g : Rn → R (or C), define the convolution f ∗ g by

(f ∗ g)(x) =

∫

Rn

f(y)g(x− y) dy.

For example, define the linear operator Tα by Tαf = f ∗ |x|−α, so

Tαf(x) =

∫

Rn

f(y)|x− y|−α dy.

Assume 0 < α < n and f ∈ C0
comp; then this integral converges for all x ∈ Rn.

Let’s look at Tαf for some specific examples of f .

(1) Let B1 denote the unit ball and χB1
its characteristic function. It’s not hard

to see that

|TαχB1
(x)| ∼

{

1 if |x| ≤ 1,

|x|−α if |x| > 1.
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(2) Let Br denote the ball centered at the origin with radius r, χBr
its charac-

teristic function. Then

|TαχBr
(x)| ∼

{

rnr−α if |x| ≤ r,

rn|x|−α if |x| > r.

We’ll leave it at that for examples. Now let’s ask the question: For which p, q is
there an inequality

(∗) ‖Tαf‖Lq . ‖f‖Lp

which holds for all f?
If we take f = χB1

as in example (1), we have ‖f‖Lp ∼ 1 and ‖Tαf‖q
Lq ∼

∫

Rn(1 +
|x|)−αq, which is finite if and only if αq > n. So if (∗) is to hold, we must have
αq > n.

If we take f = χBr
as in example (2), we have ‖f‖Lp ∼ rn/p. When calculating

‖Tαf‖Lq , we can show that the “tail” of the integral doesn’t contribute too much as
long as αq > n, so ‖Tαf‖Lq ∼ ‖rnr−αχBr

‖Lq ∼ rn−α+n/q. So for (∗) to hold we need
rn−α+n/q . rn/p. Letting r → 0 and r → ∞, we thus need n − α + n/q = n/p.


