
PROOF OF THUE’S THEOREM – PART III

1. Outline of the proof of Thue’s theorem

Theorem 1.1. (Thue) If β is an irrational algebraic number, and γ > deg(β)+2
2

, then
there are only finitely many integer solutions to the inequality

|β −
p

q
| ≤ |q|−γ.

By using parameter counting, we constructed polynomials P with integer coeffi-
cients that vanish to high order at (β, β). The degree of P and the size of P are
controlled.

If r1, r2 are rational numbers with large height, then we proved that P cannot
vanish to such a high order at r = (r1, r2). For some j of controlled size, we have
∂j

1P (r) 6= 0. Since P has integer coefficients, and r is rational, |∂j
1P (r)| is bounded

below.
Since P vanishes to high order at (β, β), we can use Taylor’s theorem to bound

|∂j
1P (r)| from above in terms of |β − r1| and |β − r2|. So we see that |β − r1| or

|β − r2| needs to be large.
Here is the framework of the proof. We suppose that there are infinitely many

rational solutions to the inequality |β − r| ≤ ‖r‖−γ. Let ǫ > 0 be a small parameter
we will play with. We let r1 be a solution with very large height, and we let r2 be a

solution with much larger height. Using these, we will prove that γ ≤ deg(β)+2
2

+C(β)ǫ.

2. The polynomials

For each integer m ≥ 1, we proved that there exists a polynomial P = Pm ∈
Z[x1, x2] with the following properties:

(1) We have ∂j
1P (β, β) = 0 for j = 0, ..., m − 1.

(2) We have Deg2P ≤ 1 and Deg1P ≤ (1 + ǫ)deg(β)
2

m.
(3) We have |P | ≤ C(β, ǫ)m.

3. The rational point

Suppose that r1, r2 are good rational approximations to β in the sense that

‖β − ri‖ ≤ ‖r1‖
−γ.
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Also, we will suppose that ‖r1‖ is sufficiently large in terms of β, ǫ, and that ‖r2‖
is sufficiently large in terms of β, ǫ, and ‖r1‖.

If l ≥ 2 and ∂j
1P (r) = 0 for j = 0, ..., l − 1, then we proved the following estimate:

|P | ≥ min((2degP )−1‖r1‖
l−1
2 , ‖r2‖).

Given our bound for |P |, we get

C(β, ǫ)m ≥ min(‖r1‖
l−1
2 , ‖r2‖).

From now on, we only work with m small enough so that

C(β, ǫ)m < ‖r2‖. Assumption

Therefore, ‖r1‖
l−1
2 ≤ C(β, ǫ)m. We assume that ‖r1‖ is large enough so that

‖r1‖
ǫ > C(β, ǫ), and this implies that l ≤ ǫm. Therefore, there exists some j ≤ ǫm

so that ∂j
1P (r) 6= 0.

Let P̃ = (1/j!)∂j
1P . The polynomial P̃ has integer coefficients, and |P̃ | ≤ 2degP |P |.

Therefore, P̃ obeys essentially all the good properties of P above:

(1) We have ∂j
1P̃ (β, β) = 0 for j = 0, ..., (1 − ǫ)m − 1.

(2) We have Deg2P̃ ≤ 1 and Deg1P̃ ≤ (1 + ǫ)deg(β)
2

m.

(3) We have |P̃ | ≤ C(β, ǫ)m.
(4) We also have P̃ (r) 6= 0.

Since P̃ has integer coefficients, we can write P̃ (r) as a fraction with a known

denominator: qDeg1P̃
1 qDeg2P̃

2 . Therefore,

|P̃ (r)| ≥ ‖r1‖
−Deg1P̃‖r2‖

−Deg2P̃ ≥ ‖r1‖
−(1+ǫ)deg(β)

2
m‖r2‖

−1.

We make some notation to help us focus on what’s important. In our problem,
terms like ‖r1‖

m or ‖r2‖ are substantial, but terms like ‖r1‖
ǫm or ‖r1‖ are minor in

comparison. Therefore, we write A . B to mean
A ≤ ‖r1‖

aǫm‖r1‖
b, for some constants a, b depending only on β.

Recall that ‖r1‖
ǫ is bigger than C(β, ǫ), so C(β, ǫ)m . 1. Our main inequality for

this section is

|P̃ (r)| & ‖r1‖
−

deg(β)
2

m‖r2‖
−1. (1)

4. Taylor’s theorem estimates

We recall Taylor’s theorem.
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Theorem 4.1. If f is a smooth function on an interval, then f(x + h) can be
approximated by its Taylor expansion around x:

f(x + h) =
∑m−1

j=0 (1/j!)∂jf(x)hj + E,
where the error term E is bounded by
|E| ≤ (1/m!) supy∈[x,x+h] |∂mf(y)|.

In particular, if f vanishes to high order at x, then f(x + h) will be very close to
f(x).

Corollary 4.2. If Q is a polynomial, and Q vanishes at x to order m ≥ 1, and if
|h| ≤ 1, then

|Q(x + h)| ≤ C(x)degQ|Q|hm.

Proof. We see that (1/m!)∂mQ is a polynomial with coefficients of size ≤ 2degQ|Q|.
We evaluate it at a point y with |y| ≤ |x| + 1. Each monomial has norm ≤
2degQ|Q|(|x| + 1)degQ, and there are degQ monomials. �

Let Q(x) = P̃ (x, β). The polynomial Q vanishes to high order (1− ǫ)m at x = β,
and |Q| ≤ C(β, ǫ)m.

From the corollary we see that

|P̃ (r1, β)| ≤ C(β, ǫ)m|β − r1|
(1−ǫ)m.

On the other hand, ∂2P̃ is bounded by C(β, ǫ)m in a unit disk around (β, β), and
so

|P̃ (r1, r2) − P̃ (r1, β)| ≤ C(β, ǫ)m|β − r2|.

Combining these, we see that

|P̃ (r)| . |β − r1|
(1−ǫ)m + |β − r2| . ‖r1‖

−γm + ‖r2‖
−γ. (2)

5. Putting it together

As long as ‖r1‖
ǫ > C(β, ǫ) and ‖r2‖ > C(β, ǫ)m, we have proven the following

inequality:

‖r1‖
−

deg(β)
2

m‖r2‖
−1 . ‖r1‖

−γm + ‖r2‖
−γ

Now we can choose m. As m increases, the right-hand side decreases until ‖r1‖
m ∼

‖r2‖, and then the ‖r2‖
−γ term becomes dominant. Therefore, we choose m so that

‖r1‖
m ≤ ‖r2‖ ≤ ‖r1‖

m+1.
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We see that ‖r2‖ ≥ ‖r1‖
m > C(β, ǫ)m, so the assumption about r2 and m above

is satisfied. The inequality becomes

‖r1‖
−

deg(β)
2

m−m . ‖r1‖
−γm.

Multiplying through to make everything positive, we get

‖r1‖
γm . ‖r1‖

deg(β)+2
2

m.

Unwinding the ., this actually means

‖r1‖
γm ≤ ‖r1‖

b+aǫm+
deg(β)+2

2
m.

(If we had been more explicit, we could have gotten specific values for a, b, but it
doesn’t matter much.)

Taking the logarithm to base ‖r1‖ and dividing by m, we get

γ ≤ (b/m) + aǫ +
deg(β) + 2

2
.

If ‖r2‖ is large enough compared to ‖r1‖, then (1/m) ≤ ǫ, and we have γ ≤

(a + b)ǫ + deg(β)+2
2

. Taking ǫ → 0 finishes the proof.


