PROOF OF THUE'S THEOREM – PART III

1. Outline of the proof of Thue's theorem

Theorem 1.1. (Thue) If β is an irrational algebraic number, and $\gamma > \frac{\deg(\beta)+2}{2}$, then there are only finitely many integer solutions to the inequality

$$|\beta - \frac{p}{q}| \le |q|^{-\gamma}.$$

By using parameter counting, we constructed polynomials P with integer coefficients that vanish to high order at (β, β) . The degree of P and the size of P are controlled.

If r_1 , r_2 are rational numbers with large height, then we proved that P cannot vanish to such a high order at $r = (r_1, r_2)$. For some j of controlled size, we have $\partial_1^j P(r) \neq 0$. Since P has integer coefficients, and r is rational, $|\partial_1^j P(r)|$ is bounded below.

Since P vanishes to high order at (β, β) , we can use Taylor's theorem to bound $|\partial_1^j P(r)|$ from above in terms of $|\beta - r_1|$ and $|\beta - r_2|$. So we see that $|\beta - r_1|$ or $|\beta - r_2|$ needs to be large.

Here is the framework of the proof. We suppose that there are infinitely many rational solutions to the inequality $|\beta - r| \leq ||r||^{-\gamma}$. Let $\epsilon > 0$ be a small parameter we will play with. We let r_1 be a solution with very large height, and we let r_2 be a solution with much larger height. Using these, we will prove that $\gamma \leq \frac{\deg(\beta)+2}{2} + C(\beta)\epsilon$.

2. The polynomials

For each integer $m \ge 1$, we proved that there exists a polynomial $P = P_m \in \mathbb{Z}[x_1, x_2]$ with the following properties:

- (1) We have $\partial_1^j P(\beta, \beta) = 0$ for j = 0, ..., m 1.
- (2) We have $Deg_2P \leq 1$ and $Deg_1P \leq (1+\epsilon)\frac{deg(\beta)}{2}m$.
- (3) We have $|P| \leq C(\beta, \epsilon)^m$.

3. The rational point

Suppose that r_1, r_2 are good rational approximations to β in the sense that

$$\|\beta - r_i\| \leq \|r_1\|^{-\gamma}.$$

Also, we will suppose that $||r_1||$ is sufficiently large in terms of β , ϵ , and that $||r_2||$ is sufficiently large in terms of β , ϵ , and $||r_1||$.

If $l \ge 2$ and $\partial_1^j P(r) = 0$ for j = 0, ..., l-1, then we proved the following estimate:

$$|P| \ge \min((2degP)^{-1} ||r_1||^{\frac{l-1}{2}}, ||r_2||).$$

Given our bound for |P|, we get

$$C(\beta, \epsilon)^m \ge \min(\|r_1\|^{\frac{l-1}{2}}, \|r_2\|).$$

From now on, we only work with m small enough so that

$$C(\beta,\epsilon)^m < ||r_2||.$$
 Assumption

Therefore, $||r_1||^{\frac{l-1}{2}} \leq C(\beta, \epsilon)^m$. We assume that $||r_1||$ is large enough so that $||r_1||^{\epsilon} > C(\beta, \epsilon)$, and this implies that $l \leq \epsilon m$. Therefore, there exists some $j \leq \epsilon m$ so that $\partial_1^j P(r) \neq 0$.

Let $\tilde{P} = (1/j!)\partial_1^j P$. The polynomial \tilde{P} has integer coefficients, and $|\tilde{P}| \leq 2^{degP}|P|$. Therefore, \tilde{P} obeys essentially all the good properties of P above:

- (1) We have $\partial_1^j \tilde{P}(\beta, \beta) = 0$ for $j = 0, ..., (1 \epsilon)m 1$.
- (2) We have $Deg_2\tilde{P} \leq 1$ and $Deg_1\tilde{P} \leq (1+\epsilon)\frac{deg(\beta)}{2}m$.
- (3) We have $|\tilde{P}| < C(\beta, \epsilon)^m$.
- (4) We also have $\tilde{P}(r) \neq 0$.

Since \tilde{P} has integer coefficients, we can write $\tilde{P}(r)$ as a fraction with a known denominator: $q_1^{Deg_1\tilde{P}}q_2^{Deg_2\tilde{P}}$. Therefore,

$$|\tilde{P}(r)| \ge ||r_1||^{-Deg_1\tilde{P}} ||r_2||^{-Deg_2\tilde{P}} \ge ||r_1||^{-(1+\epsilon)\frac{deg(\beta)}{2}m} ||r_2||^{-1}.$$

We make some notation to help us focus on what's important. In our problem, terms like $||r_1||^m$ or $||r_2||$ are substantial, but terms like $||r_1||^{\epsilon m}$ or $||r_1||$ are minor in comparison. Therefore, we write $A \leq B$ to mean

 $A \leq ||r_1||^{a\epsilon m} ||r_1||^b$, for some constants a, b depending only on β .

Recall that $||r_1||^{\epsilon}$ is bigger than $C(\beta, \epsilon)$, so $C(\beta, \epsilon)^m \leq 1$. Our main inequality for this section is

$$|\tilde{P}(r)| \gtrsim ||r_1||^{-\frac{\deg(\beta)}{2}m} ||r_2||^{-1}.$$
 (1)

4. Taylor's theorem estimates

We recall Taylor's theorem.

Theorem 4.1. If f is a smooth function on an interval, then f(x + h) can be approximated by its Taylor expansion around x:

 $f(x+h) = \sum_{j=0}^{m-1} (1/j!) \partial_j f(x) h^j + E,$ where the error term E is bounded by $|E| \le (1/m!) \sup_{y \in [x,x+h]} |\partial_m f(y)|.$

In particular, if f vanishes to high order at x, then f(x+h) will be very close to f(x).

Corollary 4.2. If Q is a polynomial, and Q vanishes at x to order $m \ge 1$, and if $|h| \le 1$, then

$$|Q(x+h)| \le C(x)^{degQ} |Q| h^m.$$

Proof. We see that $(1/m!)\partial^m Q$ is a polynomial with coefficients of size $\leq 2^{degQ}|Q|$. We evaluate it at a point y with $|y| \leq |x| + 1$. Each monomial has norm $\leq 2^{degQ}|Q|(|x|+1)^{degQ}$, and there are degQ monomials.

Let $Q(x) = \tilde{P}(x,\beta)$. The polynomial Q vanishes to high order $(1-\epsilon)m$ at $x = \beta$, and $|Q| \leq C(\beta,\epsilon)^m$.

From the corollary we see that

$$|\tilde{P}(r_1,\beta)| \le C(\beta,\epsilon)^m |\beta - r_1|^{(1-\epsilon)m}.$$

On the other hand, $\partial_2 \tilde{P}$ is bounded by $C(\beta, \epsilon)^m$ in a unit disk around (β, β) , and so

$$|\tilde{P}(r_1, r_2) - \tilde{P}(r_1, \beta)| \le C(\beta, \epsilon)^m |\beta - r_2|.$$

Combining these, we see that

$$|\tilde{P}(r)| \lesssim |\beta - r_1|^{(1-\epsilon)m} + |\beta - r_2| \lesssim ||r_1||^{-\gamma m} + ||r_2||^{-\gamma}.$$
 (2)

5. Putting it together

As long as $||r_1||^{\epsilon} > C(\beta, \epsilon)$ and $||r_2|| > C(\beta, \epsilon)^m$, we have proven the following inequality:

$$\|r_1\|^{-\frac{\deg(\beta)}{2}m}\|r_2\|^{-1} \lesssim \|r_1\|^{-\gamma m} + \|r_2\|^{-\gamma}$$

Now we can choose m. As m increases, the right-hand side decreases until $||r_1||^m \sim ||r_2||$, and then the $||r_2||^{-\gamma}$ term becomes dominant. Therefore, we choose m so that

$$||r_1||^m \le ||r_2|| \le ||r_1||^{m+1}.$$

We see that $||r_2|| \ge ||r_1||^m > C(\beta, \epsilon)^m$, so the assumption about r_2 and m above is satisfied. The inequality becomes

$$|r_1||^{-\frac{\deg(\beta)}{2}m-m} \lesssim ||r_1||^{-\gamma m}.$$

Multiplying through to make everything positive, we get

$$|r_1|^{\gamma m} \lesssim ||r_1||^{\frac{\deg(\beta)+2}{2}m}.$$

Unwinding the $\lesssim,$ this actually means

$$||r_1||^{\gamma m} \le ||r_1||^{b+a\epsilon m + \frac{deg(\beta)+2}{2}m}.$$

(If we had been more explicit, we could have gotten specific values for a, b, but it doesn't matter much.)

Taking the logarithm to base $||r_1||$ and dividing by m, we get

$$\gamma \le (b/m) + a\epsilon + \frac{\deg(\beta) + 2}{2}.$$

If $||r_2||$ is large enough compared to $||r_1||$, then $(1/m) \leq \epsilon$, and we have $\gamma \leq (a+b)\epsilon + \frac{\deg(\beta)+2}{2}$. Taking $\epsilon \to 0$ finishes the proof.