PROOF OF THUE’S THEOREM - PART III

1. OUTLINE OF THE PROOF OF THUE’S THEOREM

Theorem 1.1. (Thue) If 5 is an irrational algebraic number, and ~y > %5)”, then
there are only finitely many integer solutions to the inequality

p -
16 —=] <lq|7".
q

By using parameter counting, we constructed polynomials P with integer coeffi-
cients that vanish to high order at (3,3). The degree of P and the size of P are
controlled.

If ry, ro are rational numbers with large height, then we proved that P cannot
vanish to such a high order at r = (r1,r2). For some j of controlled size, we have
& P(r) # 0. Since P has integer coefficients, and r is rational, |/ P(r)| is bounded
below.

Since P vanishes to high order at (3, 3), we can use Taylor’s theorem to bound
|/ P(r)| from above in terms of |3 — 1| and |3 — r3]. So we see that |3 — 7| or
|3 — 72| needs to be large.

Here is the framework of the proof. We suppose that there are infinitely many
rational solutions to the inequality |3 —r| < ||r]|™. Let € > 0 be a small parameter
we will play with. We let r; be a solution with very large height, and we let 75 be a
solution with much larger height. Using these, we will prove that v < %jLC (B)e.

2. THE POLYNOMIALS

For each integer m > 1, we proved that there exists a polynomial P = P,, €
Z[x1, xo) with the following properties:
(1) We have & P(3,3) =0 for j =0,...,m — 1.
(2) We have Dego P <1 and Deg; P < (1 + e)degT(mm.
(3) We have |P| < C(5,¢)™.

3. THE RATIONAL POINT

Suppose that ri,ry are good rational approximations to 3 in the sense that

18 = rill < lmal[™
1
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Also, we will suppose that ||r|| is sufficiently large in terms of 3, ¢, and that ||rs||
is sufficiently large in terms of 3, ¢, and [[rq||.
If I >2and 9] P(r) =0 for j =0,...,1 — 1, then we proved the following estimate:

. _ -1
|P| > min((2degP) 1] =, ||72]])-

Given our bound for |P|, we get

C(B, €)™ > min(||r|| 7, ||r2])-

From now on, we only work with m small enough so that

C(B,e)™ < ||ra]|- Assumption

Therefore, ||r| = < C(3,€)™. We assume that ||ri|| is large enough so that
|lr1]]¢ > C(5,€), and this implies that [ < em. Therefore, there exists some j < em
so that &) P(r) # 0.

Let P = (1/41)0]P. The polynomial P has integer coefficients, and |P| < 2997 | P|,

Therefore, P obeys essentially all the good properties of P above:
(1) We have & P(3,3) =0 for j =0, ..., (1 —€)m — 1.
(2) We have Degy P < 1 and Deg, P < (1 + e)degT(mm.
(3) We have |P| <CB,e)™.
(4) We also have P(r) # 0.

Since P has integer coefficients, we can write P(r) as a fraction with a known

Degl]5 Degg]5
2

denominator: q; q . Therefore,

[P()] > (a0 Py | ~Pe2P > [y || 7O+ 1,

We make some notation to help us focus on what’s important. In our problem,
terms like ||r1]|™ or ||72]| are substantial, but terms like ||71||“™ or ||r1|| are minor in
comparison. Therefore, we write A < B to mean

A < ||r1]j@™||r1||°, for some constants a, b depending only on 3.

Recall that ||r]|€ is bigger than C'(5,¢€), so C(8, €)™ < 1. Our main inequality for
this section is

deg(B)

[P Z == ol (1)

4. TAYLOR’S THEOREM ESTIMATES

We recall Taylor’s theorem.
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Theorem 4.1. If f is a smooth function on an interval, then f(x + h) can be
approximated by its Taylor expansion around x:

flo+h) =31 (1/300;f (@)l + E,

where the error term E is bounded by
|E| < (1/ml) subyee o n [Omf ()]

In particular, if f vanishes to high order at x, then f(x + h) will be very close to
f(@).
Corollary 4.2. If Q) is a polynomial, and () vanishes at x to order m > 1, and if
|h| <1, then
|Q(a + )| < C(2)™9|Q|n™.

Proof. We see that (1/m!)0™Q is a polynomial with coefficients of size < 249¢|Q)|.
We evaluate it at a point y with |y| < |z| + 1. Each monomial has norm <
24¢9Q| Q| (|| + 1)9°9%, and there are deg( monomials. O

Let Q(z) = P(z, 3). The polynomial @ vanishes to high order (1 — €)m at = = 3,
and [Q] < C(3,¢)™.
From the corollary we see that
[Py, B)] < C(8,)"8 = |07,

On the other hand, 8, P is bounded by C(f, €)™ in a unit disk around (8, 3), and
SO

|P(r1,75) = P(r1, 8)] < C(8,)"|8 — 7.
Combining these, we see that

[P S 18 = | 18 = raf S [l 77 + [|ra| 77 2)

5. PUTTING IT TOGETHER

As long as ||r1]|¢ > C(B,¢€) and ||re]| > C(B, €)™, we have proven the following
inequality:

_ deg(B)
Y -

Pl TS T el

Now we can choose m. As m increases, the right-hand side decreases until ||ry|™ ~
||72||, and then the ||r3]| =7 term becomes dominant. Therefore, we choose m so that

™ < firall < flra ™
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We see that ||ra]] > [|m1]|™ > C(B, €)™, so the assumption about 7o and m above
is satisfied. The inequality becomes

[ e P el

Multiplying through to make everything positive, we get

deg(B)+2
Il S el

Unwinding the <, this actually means

||7“1Hqu < ’|T1||b+aem+wm‘

(If we had been more explicit, we could have gotten specific values for a, b, but it
doesn’t matter much.)
Taking the logarithm to base ||| and dividing by m, we get

deg () + 2
—
If ||ro|| is large enough compared to |||, then (1/m) < ¢, and we have v <

(a+b)e+ deggﬂ. Taking € — 0 finishes the proof.

v < (b/m) + ae +



