THE REGULUS DETECTION LEMMA

In this lecture we prove the regulus detection lemma, our last result about incidence of lines in \mathbb{R}^{3}.

Regulus detection lemma. For any polynomial P in $\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$, we can associate a list of polynomials RP with the following properties.
(1) $\operatorname{DegRP} \leq C D e g P$.
(2) If x is contained in two lines in $Z(P)$, then $R P(x)=0$.
(3) If P is irreducible and $R P$ vanishes on $Z(P)$, and if there is a non-special point x contained in two lines in $Z(P)$, then $Z(P)$ is a regulus.

The key fact about a regulus that we will use is that it is doubly ruled. A surface $Z(P)$ is called doubly ruled if each point of $Z(P)$ lies in two distinct lines in $Z(P)$. The regulus and the plane are the only irreducible doubly ruled algebraic surfaces in \mathbb{R}^{3} (as we will prove). The job of the polynomial $R P$ is roughly to detect whether there are two distinct directions in which the polynomial P vanishes to high order. (However, there is no polynomial that would do exactly this job. We discuss the problems below and we will see that $R P$ almost does the job.)

Our first task is to define $R P$. Suppose that $v=\left(v_{1}, v_{2}, v_{3}\right)$. Suppose that $Q_{s}(v)$ is a homogenenous polynomial of degree s, for $s=1,2,3$. Let I be the ideal generated by Q_{1}, Q_{2}, Q_{3} in $\mathbb{R}[v]$. Recall that $I_{=3}$ denotes the homogeneous degree 3 polynomials in I and that $H_{=d}$ denotes the homogeneous degree d polynomials in $\mathbb{R}[v]$.

Lemma 0.1. The set $\left\{\left(Q_{1}, Q_{2}, Q_{3}\right) \in H_{=1} \times \ldots \times H_{=3} \mid\right.$ dim $\left.I_{=3} \leq 8\right\}$ is an algebraic set. It is equal to $Z(R)$, where R is a finite list of polynomials in the coefficients of the Q_{s}. Each polynomial in R has degree ≤ 9.
(This is just a special case of a previous lemma. Our set is given by the vanishing of some 9×9 subdeterminants of a multiplication matrix, whose coefficients are coefficients of Q_{s}.)

We define $Q_{s, x}(v)=\nabla_{v}^{s} P(x)=\sum_{|I|=s} I!\partial_{I} P(x) v^{I}$, a homogenenous polynomial in v of degree s. The coefficients of $Q_{s, x}(v)$ are polynomials in x of degree $\leq \operatorname{deg} P$. We let $R P$ be $R\left(Q_{1, x}, Q_{2, x}, Q_{3, x}\right)$. Therefore, $R P$ is a finite list of polynomials of degree $\leq 9 \operatorname{deg} P$. We have now checked property 1 of the regulus detection lemma.

We let $I(x)$ be the ideal generated by $Q_{1, x}, Q_{2, x}, Q_{3, x}$. We have $R P(x)=0$ if and only if $I(x)_{=3}$ has dimension ≤ 8.

The next task is to discuss the geometric meaning of the condition $\operatorname{dimI}(x)_{=3} \leq 8$. The most important fact is contained in the following lemma.

Lemma 0.2. Suppose that x is a regular point of $Z(P)$. Suppose that $\nabla^{2} P(x)$: $T_{x} Z \times T_{x} Z \rightarrow \mathbb{R}$ has signature $(1,1)$. In this case there are two linearly-independent directions, $\nu_{1}, \nu_{2} \in T Z$ so that $\nabla_{\nu_{i}}^{2} P(x)=0$. Given these assumptions,

$$
R P(x)=0 \text { if and only if } \nabla_{\nu_{1}}^{3} P(x)=\nabla_{\nu_{2}}^{3} P(x)=0 .
$$

This lemma says that under some fairly mild conditions, $R P$ detects whether there are two linearly independent vectors which solve the equations $0=\nabla_{\nu}^{s} P(x)$ for $s=1,2,3$.

Proof. We start by understanding the ideal $I_{1,2}$ generated by $Q_{1, x}$ and $Q_{2, x}$. We claim that $I_{1,2}$ is exactly the ideal of polynomials that vanishes on the multiples of ν_{1} and ν_{2}. In other words, for any degree $d, I_{1,2,=d}$ is the space of degree d polynomials that vanish on ν_{1} and ν_{2}.

We prove the claim as follows. Since x is a regular point of $Z(P), \nabla P(x)$ is nonzero. The ideal generated by $Q_{1, x}$ is exactly the set of polynomials that vanish on $T Z$. After performing a linear transformation, we can arrange that $T Z$ is spanned by $(1,0,0)=\nu_{1}$ and $(0,1,0)=\nu_{2}$. Now $\mathbb{R}\left[v_{1}, v_{2}, v_{3}\right] /\left(Q_{1, x}\right)$ is isomorphic to $\mathbb{R}\left[v_{1}, v_{2}\right]$. Next, we consider the image of $Q_{2, x}$ in $\mathbb{R}\left[v_{1}, v_{2}, v_{3}\right] /\left(Q_{1, x}\right)=\mathbb{R}\left[v_{1}, v_{2}\right]$. This image is non-zero, because $\nabla^{2} P(x): T_{x} Z \times T_{x} Z \rightarrow \mathbb{R}$ is non-degenerate. It vanishes on $(1,0,0)$ and on $(0,1,0)$, so it must be a non-zero multiple of $v_{1} v_{2}$. Therefore, $I(x)$ is the ideal generated by v_{3} and $v_{1} v_{2}$. The rest of the claim is easy to check.

We see that $I_{1,2,=d}$ is the kernel of the evaluation map from $\mathbb{R}[v]_{=d}$ to the two points ν_{1} and ν_{2}. For each $d \geq 1$, this map is surjective, and so for all $d \geq 1$, $\operatorname{dim} I_{1,2,=d}=\operatorname{dim} \mathbb{R}[v]_{=d}-2$. In particular, for $d=3$, we get $\operatorname{dim} I_{1,2,=3}=8$.

Now we are ready to show the the conclusion of the lemma. We know that $R P(x)=$ 0 if and only if the dimension of $I_{=3}$ is ≤ 8. Now $I_{=3}$ is spanned by $I_{1,2,=3}$ and $Q_{3, x}$, and the dimension of $I_{1,2,=3}$ is already 8. So $\operatorname{dim} I_{=3} \leq 8$ if and only if $Q_{3, x} \in I_{1,2}$ if and only if $Q_{3, x}\left(\nu_{1}\right)=Q_{3, x}\left(\nu_{2}\right)=0$. Since $Q_{3, x}(v)=\nabla_{v}^{3} P(x)$, this last equation is equivalent to $\nabla_{\nu_{1}}^{3} P(x)=\nabla_{\nu_{2}}^{3} P(x)=0$.

We talk briefly about other situations. If x is a critical point of P, then $R P(x)=0$. If x is a flat point of $Z(P)$ then $R P(x)=0$. These are the only situations we will actually need. We put the write-up in the appendix.

For context, we talk a little more generally. The basic issue is that we are trying to detect whether some equations have two distinct roots. But having two distinct roots is not an algebraic condition - which we can see already by considering quadratic polynomials. Roughly speaking, if $R P(x)=0$ then there are either two independent directions which satisfy the flecnodal equation, or else there may be one direction that satisfies the equation "with multiplicity 2". I believe that this happens for Gaussian
flat surfaces. So I believe that there are lots of irreducible P where $R P=0$ on $Z(P)$: planes and reguli and also Gaussian flat algebraic surfaces such as cylinders...

Now we are ready to verify the second property in the regulus detection lemma.
Lemma 0.3. If x lies in two lines in $Z(P)$, then $R P(x)=0$.
Proof. If x is critical or flat, then we have seen that $R P(x)=0$. Suppose that x is not critical or flat. Let ν_{1} and ν_{2} be the tangent directions of the two lines. We know that $\nabla_{\nu_{i}}^{s} P(x)=0$ for $i=1,2$ and for any s. In particular, $\nabla^{2} P(x): T_{x} Z \times T_{x} Z \rightarrow \mathbb{R}$ is a non-zero quadratic form (in two variables) that vanishes on two independent vectors, and so it must have signature $(1,1)$. Now Lemma 0.2 implies that $R P(x)=0$.

Finally, we are ready to prove the third property - that under some conditions $R P=0$ implies that $Z(P)$ is a regulus. We state the result as a lemma.

Lemma 0.4. If P is irreducible and $R P$ vanishes on $Z(P)$, and if there is a nonspecial point x_{0} contained in two lines in $Z(P)$, then $Z(P)$ is a regulus.

The proof is based on local-to-global results for ruled surfaces. In particular, we will use the following result from last lecture:

Proposition 0.5. Suppose that $P \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$. Let $O \subset Z(P)$ be an open subset of $Z(P)$. Suppose that V is a smooth, non-zero vector field on O, obeying the flecnodal equation:

$$
0=\nabla_{V}^{s} P(x), \text { for all } x \in O, s=1,2,3
$$

Suppose that at each point $x \in O, \nabla P(x) \neq 0$ and $\nabla^{2} P(x): T Z \times T Z \rightarrow \mathbb{R}$ is non-degenerate.

Then the integral curves of V are straight line segments.
Proof. We know that $\nabla^{2} P\left(x_{0}\right)$ vanishes in the tangent directions to the two lines. Since x_{0} is not flat, $\nabla^{2} P\left(x_{0}\right): T_{x} Z \times T_{x} Z \rightarrow \mathbb{R}$ is non-zero, and we see that it must have signature $(1,1)$. We can choose an open neighborhood $O \subset Z(P)$ around x_{0}, so that $\nabla P \neq 0$ and $\nabla^{2} P: T Z \times T Z \rightarrow \mathbb{R}$ has signature (1,1) in O. (In particular, $\nabla^{2} P$ is non-degenerate on O.)

At each point of O, there are two independent vectors $V_{1}, V_{2} \in T Z$ with $\nabla_{V}^{2} P(x)=$ 0 . We can normalize them to get two smooth vector fields V_{1} and V_{2}. Since $R P=0$ on O, Lemma 0.2 implies that V_{1} and V_{2} each satisfy the flecnodal equation: $\nabla_{V_{i}}^{s} P(x)=$ 0 for $s=1,2,3$. Now by the proposition above, the integral curves of V_{1} and V_{2} are each straight line segments. We call the integeral curves of V_{1} "horizontal" lines, and we call the integral curves of V_{2} "vertical lines".

In a small neighborhood of x_{0}, we will check that each horizontal line intersects each vertical line. Then we will find a plane or regulus that contains infinitely many
horizontal lines, and we will conclude that $Z(P)$ is a plane or a regulus. (Finally the assumption that x_{0} is not flat means that $Z(P)$ can only be a regulus.)

The set $O \subset Z(P)$ is given by a graph. After a rotation and possibly shrinking O, we can assume that O is given by equation $h\left(x_{1}, x_{2}\right)=x_{3}$ for a smooth function h, and that x_{0} is the origin $(0,0,0)$. After a linear change of coordinates, we can assume that at x_{0}, the direction V_{1} is $(1,0,0)$ and V_{2} is $(0,1,0)$. Let L_{1} be the horizontal line through x_{0}, and let L_{2} be the vertical line through x_{0}. Notice that L_{1} is just the line $x_{2}=x_{3}=0$. For each point $(t, 0,0)$ in L_{1}, let $L_{2}(t)$ be the vertical line through $(t, 0,0)$. Notice that $L_{2}(t)$ is the graph of h restricted to a line $l_{2}(t)$ in the $x_{1}-x_{2}$ plane. The line $l_{2}(t)$ passes through $(t, 0)$, and if t is small, it has slope close to $(0,1)$. Similarly, let $L_{1}(u)$ be the horizontal line through ($0, u, 0$), which is the graph of h restricted to $l_{1}(u)$ - a line in the plane thru $(0, u)$ with slope close to $(1,0)$. If t, u are small enough, then $l_{1}(u)$ and $l_{2}(t)$ intersect in a small neighborhood of 0 , and so $L_{1}(u)$ and $L_{2}(t)$ interect in O.

By shrinking O, we can arrange that no two vertical lines intesect in O. Now fix three vertical lines close to L_{2}. There are infinitely many horizontal lines that intersect all three of the vertical lines in O. If the three vertical lines are skew, then infinitely many horizontal lines lie in a regulus. Now $Z(P)$ intersects the regulus in infinitely many lines - and since P is irreducible, $Z(P)$ is a regulus. If two of the vertical lines are coplanar, then infinitely many horizontal lines lie in a plane, and so $Z(P)$ would be a plane.

0.1. On RP at critical and flat points.

Lemma 0.6. If $\nabla P(x)=0$, then $R P(x)=0$.
Proof. Since $\nabla P(x)=0$, we have $Q_{1, x}(v)=0$. Therefore, $I(x)$ is the ideal generated by $Q_{2, x}$ and $Q_{3, x}$. Therefore, the dimension of $I(x)_{=3}$ is at most $3+1=4 \leq 8$.

Lemma 0.7. Assume x is a regular point of $Z(P)$. Then x is flat if and only if $\nabla^{2} P(x): T_{x} Z \times T_{x} Z \rightarrow \mathbb{R}$ is equal to zero, if and only if $Q_{2, x}$ is a multiple of $Q_{1, x}$.

Proof. The first equivalence is an exercise in multivariable calculus. Rotate and translate space so that $x=0$, and $\partial_{1} P(0)=\partial_{2} P(0)=0$ but $\partial_{3} P(0) \neq 0$. Without loss of generality we can work with these coordinates for the rest of the proof.

Locally near 0 , the surface $Z(P)$ is given by a graph of a function h : $x_{3}=h\left(x_{1}, x_{2}\right)$. Therefore $P\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)=0$ for all $\left(x_{1}, x_{2}\right)$ in a neighborhood of 0 . Differentiating once, we see that $\partial_{1} h(0)=\partial_{2} h(0)=0$. Using this information and differentiating twice, we see that

$$
\partial_{i j} P(0)=\partial_{3} P(0) \partial_{i j} h(0), \text { for } i, j \in\{1,2\} .
$$

This proves the first equivalence. In these coordinates, we have at $x=0, Q_{1, x}(v)=$ $c v_{3}$ for a non-zero constant c. Also, $Q_{2, x}(v)=\sum_{|I|=2} I!v^{I} \partial_{I} P(x)$. So $Q_{2, x}(v)$ is a multiple of v_{3} if and only if $\partial_{1,1} P(x)=\partial_{1,2} P(x)=\partial_{2,2} P(x)=0$, if and only if x is a flat point of $Z(P)$.
Lemma 0.8. If x is a flat point of $Z(P)$, then $R P(x)=0$.
Proof. By the last lemma, $Q_{2, x}$ is in the ideal generated by $Q_{1, x}$. Therefore, $I(x)$ is the ideal generated by $Q_{1, x}$ and $Q_{3, x}$. Therefore, the dimension of $I(x)_{=3}$ is at most $6+1=7 \leq 8$.

1. Incidence estimates

Using the regulus detection lemma, and the ideas in the proof of the P_{3} estimate (lecture 15), it's straightforward to prove the following.

Theorem 1.1. Suppose that \mathfrak{L} is a set of L lines in \mathbb{R}^{3} with $\leq B$ lines in any plane or regulus, and suppose that $B \geq L^{1 / 2}$. Then $\left|P_{2}(\mathfrak{L})\right| \lesssim B L$.

Remark: It's not clear at all what happens for B smaller than $L^{1 / 2}$ - for example $B=10$.

This finishes our work on incidences of lines in \mathbb{R}^{3}. For large k, the number of k-rich points is covered by the incidence estimate using polynomial ham sandwich (lecture 20). All together we get the following result.

Theorem 1.2. Suppose that \mathfrak{L} is a set of L lines in \mathbb{R}^{3} with $\leq B$ lines in any plane or regulus. Suppose that $B \geq L^{1 / 2}$ and $2 \leq k \leq L^{1 / 2}$.

Then $\left|P_{k}(\mathfrak{L})\right| \lesssim B L k^{-2}$.
Remark. The incidence estimate in lecture 20 gives the slightly sharper but more complicated estimate $\lesssim L^{3 / 2} k^{-2}+B L k^{-3}+L k^{-1}$, which holds for all $2 \leq k \leq L$.

This incidence estimate gives enough information to carry out the program of Elekes and Sharir on distinct distances (lecture 11).

At the beginning of next lecture, we'll talk briefly about how everything fits together, and then we'll close this chapter of the course.

