
DETECTING REGULI AND PROJECTION THEORY

We have one more theorem about the incidence theory of lines in R3.

Theorem 0.1. If L is a set of L lines in R3 with ≤ B lines in any plane or regulus,
and if B ≥ L1/2, then the number of intersection points of L is . BL.

This theorem is an improvement of our earlier estimate on 3-rich points.

Theorem 0.2. If L is a set of L lines in R3 with ≤ B lines in any plane, and if
B ≥ L1/2, then |P3(L)| . BL.

Recall that Pk(L) is the set of k-rich points of L – in particular P2(L) is the set of
intersection points of L.

The proof of Theorem 0.2 uses the theory of critical points and flat points. We
can’t directly apply this theory to Theorem 0.1, because a point lying in two lines
in a surface may be neither critical nor flat. So we will have to modify/refine these
tools.

Let’s package what we need about critical/flat points into one lemma for general-
ization.

Plane detection lemma. For any polynomial P in R[x1, x2, x3], we can associate
a list of polynomials SP with the following properties.

(1) DegSP ≤ 3DegP .
(2) If x is contained in three lines in Z(P ), then SP (x) = 0.
(3) If P is irreducible and SP vanishes on Z(P ), then Z(P ) is a plane.

Roughly speaking, SP has the job of detecting whether Z(P ) looks like a plane.
If SP (x) = 0, then it (roughly) means that Z(P ) looks kind of like a plane near x.
If SP vanishes on Z(P ) (and P irreducible), then it means that Z(P ) is a plane.
We will refine this technique and build a polynomial RP that detects whether Z(P )
looks like a regulus.

Regulus detection lemma. For any polynomial P in R[x1, x2, x3], we can associate
a list of polynomials RP with the following properties.

(1) DegRP ≤ CDegP .
(2) If x is contained in two lines in Z(P ), then RP (x) = 0.
(3) If P is irreducible and RP vanishes on Z(P ), and if there is a non-special

point x contained in two lines in Z(P ), then Z(P ) is a regulus.
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The proof of Theorem 0.1 is essentially the proof of Theorem 0.2 using the regulus
detection lemma instead of the plane detection lemma. We will include the details
later, but there are no significant new ingredients. The new tool is the regulus
detection lemma.

(The two detection lemmas are quite similar. The regulus detection lemma has an
extra condition in the last item: “if there is a non-special point x contained in two
lines in Z(P )”. Recall that x is special if it is either critical or flat. This condition
is not very elegant, but it will be easy to meet in the application to Theorem 0.1.
If all the intersection points were critical or flat, then we could handle the situation
with the plane detection lemma anyway.)

The regulus detection lemma is based on ideas about “ruled surfaces” developed
by Salmon and Cayley in the 19th century. They proved the first interesting example
of a detection lemma.

1. Ruled surfaces and flecndes

We consider algebraic surfaces in C
3 in this section.

Suppose P is an irreducible polynomial. How many lines can there be in Z(P )?
There can be infinitely many, which happens for planes, reguli, cones, and cylinders.
There are actually many other examples.

For instance, consider a polynomial map Φ : C
2 → C

3 of the form Φ(s, t) =
Φ1(s)t +Φ0(s). The image contains infinitely many lines (fix s and let t vary). Also,
the image is contained in Z(P ) for some P . (Is the image exactly Z(P ) for some P ?)

An algebraic surface Z(P ) is called ‘ruled’ if each x ∈ Z(P ) lies in a line ⊂ Z(P ).
Now we can ask a more refined question. If P is irreducible of a given degree, and
Z(P ) is not ruled, then how many lines can there be in Z(P )?

Theorem 1.1. If P is an irreducible polynomial in C[z1, z2, z3], then either Z(P ) is
ruled or the number of lines in Z(P ) is ≤ C(degP )2.

This theorem follows from the work of Salmon and Cayley from the 1800’s. It
appears in Salmon’s book A Treatise on the Analytic Geometry of Three Dimensions.
Chapter XIII deals with ruled surfaces, and ... First published in ?

In particular, the theorem follows from Salmon and Cayley’s work on the flecnode
polynomial. They proved the following result.

Ruled surface detection lemma. For any polynomial P in C[x1, x2, x3], we can
define a finite set of polynomials FP with the following properties.

(1) DegFP ≤ CDegP .
(2) If x is contained in a line in Z(P ), then FP (x) = 0.
(3) If FP vanishes on Z(P ), then Z(P ) is ruled.
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The polynomial FP is called the flecnode polynomial. In fact FP is a single
polynomial (not a set of several polynomials), but this fact doesn’t matter that
much in applications, and it’s easier to prove the Ruled surface detection lemma in
the form above. Given the flecnode polynomial, the estimate on the number of lines
in a non-ruled surface follows from Bezout’s theorem.

Salmon defined FP (and gave a formula for it), and he proved properties 1 and 2.
Then Cayley proved property 3. (See pages 277-78 of Salmon’s book.)

We will try to explain the main ideas in this type of detection lemmas. We will
try to give a fairly general point of view about how to prove this type of lemma,
and we will try to avoid writing long formulas. We will give a complete proof of the
regulus detection lemma, and we will give the main ideas of the proof of the ruled
surface detection lemma.

We say a point z ∈ C3 is flecnodal (for P ) if there exists a non-zero vector V so
that P vanishes in the direction V to fourth order. We write ∇s

V P to denote the sth

directional derivative of P in the direction V . We say P is flecnodal at z if there
exists a non-zero vector V so that

0 = ∇V P (z) = ∇2

V P (z) = ∇3

V P (z). (1)

If z is contained in a line in Z(P ), and if V is tangent to the line, then equation
(1) holds.

It can be helpful to expand this expression in terms of derivatives of P in the co-
ordinate directions. V is a vector (V1, V2, V3) ∈ C3. For a multi-index I = (i1, i2, i3),

we write V I for V i1
1

...V i3
3

, ∂I for ∂i1

∂z
i1
1

... ∂i3

∂z
i3
3

, and I! for i1! · i2! · i3!.

∇s
V P (z) :=

∑

|I|=s

I!V I∂IP (z).

Salmon defined his polynomial FP and proved that FP (z) = 0 if and only if z is
a flecnodal point. So the flecnode polynomial detects flecnodal points. These facts
boil down to the following lemma.

Lemma 1.2. Consider the set of equations

0 =
∑

|I|=s

V IaI , s = 1, 2, 3. (2)

In these equations, aI are parameters in C. We let a be the vector with components
aI , so a ∈ CM for some M .

Sol := {a ∈ C
M | Equation (2) has a non-zero solution V ∈ C

3}.
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The set Sol is an algebraic set in CM . In other words, Sol is the zero set of some
list of polynomials G.

Given the lemma, we define FP (z) = G(∂IP (z)). If G is a set of polynomials of
degree ≤ C in aI , then FP is a set of polynomials of degree ≤ C(degP ) in z. By the
lemma, a point z is flecnodal if and only if FP (z) = 0.

In summary, given the Lemma 1.2, we can immediately define FP and prove
properties 1 and 2 of the ruled surface detection lemma.

Lemma 1.2 is part of an area called projection theory. It’s a special case of the
fundamental theorem of projection theory. We introduce projection theory and prove
the fundamental theorem in the next section.

2. Projection Theory

Let F be a field. Recall that an algebraic set in FM is just the zero set of a finite
list of polynomials. Suppose that Z is an algebraic set in F

m × F
n, and we consider

the projection of Z onto the second factor. Is the projection also an algebraic set?
In general the answer is no. Let’s consider two examples. We begin working over

the field R where everything is as simple as possible to visualize.

Example 2.1. (Circle example) Let Z be the zero set of x2 + y2 − 1 in R2. If we
project Z to the x axis we get the closed segment [−1, 1]. This is not an algebraic
set.

Example 2.2. (Hyperbola example) Let Z be the zero set of xy = 1 in R2. If we
project Z to the x-axis, we get R \ {0}. This is not an algebraic set.

Projection theory studies this situation. What kind of structure do the projections
have? Are there some situations where the projection is an algebraic set?

What would happen if we work over C instead of R? The example with the circle
gets better. If we let Z be the zero set of x2 + y2 − 1 in C2, then the projection of
Z to the x axis is C. But the hyperbola example is the same as before – if we work
over C, the image of the projection is C \ {0}.

We can loosely describe the situation with the hyperbola in the following way.
For each x ∈ C \ {0}, there is a unique solution to the equation xy − 1 = 0. As
x approaches zero, this solution y(x) tends to infinity. In some sense, when x is
equal to zero, the solution is “at infinity”. We can make this precise by working with
projective space. Instead of y ∈ Fn, we can consider y ∈ FP

n. Instead of starting
with an algebraic set Z ⊂ F

m×F
n, we can start with an algebraic set Z ⊂ F

m×FP
n.

If F is algebraically closed and if we work projectively, then the projection of Z is
also algebraic.
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Working with y in projective space is equivalent to using polynomials that are
homogeneous in y. We can phrase the fundamental theorem of projection theory in
the following way.

Fundamental Theorem of Projection Theory. Suppose that Q(x, y) is a finite
list of polynomials in x ∈ Fm and y ∈ Fn, each of which is homogeneous in y. Let
SOL ⊂ F

m be the set

SOL := {x ∈ F
m|the equation Q(x, y) = 0 has a non-zero solution y ∈ F

n}.

If F is algebraically closed, then SOL is an algebraic set.

For example, consider the equations in Lemma 1.2. We have the equations 0 =∑
|I|=s aIV

I , for s = 1, 2, 3. Each equation is homogeneous in V . By the fundamental
theorem of projection theory, the set of a so that these equations have a non-zero
solution V ∈ C3 \ {0} is an algebraic set. So Lemma 1.2 is a corollary of the
fundamental theorem of projection theory.

3. Proof of the fundamental theorem of projection theory

Let F be any field. Let Qj(x, y) be homogeneous in y with degree dj. If we think of
x as a parameter, for each x, we get Qj,x(y), a polynomial in y which is homogeneous
of degree dj. We let I(x) ⊂ F[y] be the ideal spanned by the polynomials Qj,x(y).

This ideal is homogeneous. Recall that for any polynomial Q we write Q=d for
the degree d part of Q. An ideal is homogeneous if for any Q ∈ I, and any d, we
have Q=d ∈ I also. In particular, any ideal generated by homogeneous polynomials
is homogeneous. We let I(x)=d be the homogeneous degree d polynomials in I(x).

Proposition 3.1. For any integers d, B ≥ 0, the set {x ∈ Fm|dimI(x)=d ≤ B} is
an algebraic set.

This proposition follows from the homogeneity of Q(x, y) (in y).
Let H=d ⊂ F[y1, ..., yn] be the degree d homogeneous polynomials.

Proof. Consider the multiplication map M(x)=d : ⊕jH=d−dj
→ I(x)=d, given by

M=d(R) :=
∑

j

Qj,xRj .

Since Rj is homogeneous of degree d − dj and Qj,x is homogeneous of degree dj,
we see that M=d(R) is homogeneous of degree d. Since I(x) is the ideal spanned
by Qj,x, the image of M(x)=d is in I(x). So we see that M(x)=d is a linear map to
I(x)=d as claimed.
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The key point of the proof is that M(x)=d is surjective! This follows from the
homogeneity. Suppose that f ∈ I(x)=d. By definition, f is degree d and f =∑

j Qj,xfj for some polynomials fj . But since Qj,x is homogeneous of degree dj , we

see that f =
∑

j Qj,xfj,=d−dj
. So f is in the image of M(x)=d.

The linear map M(x)=d can be described by a matrix. The dimension of I(x)=d is
exactly the rank of this matrix. The entries of the matrix are polynomials in x. The
matrix M(x)=d has rank ≤ B if and only if each (B + 1) × (B + 1) subdeterminant
vanishes. Therefore, the set of matrices M(x)=d with rank ≤ B is an algebraic
set. �

Proposition 3.2. For any integers d, B ≥ 0, the set {x ∈ Fm|F[y]/I(x) is infinite dimensional}
is an algebraic set.

Proof. The first step is to see that F[y]/I(x) is infinite dimensional if and only if
I(x)=d is a proper subspace of H=d for every d ≥ 0. Indeed, if I(x)=d = H=d

for some d, then I(x) contains all homogeneous polynomials of degree ≥ d, and so
F[y]/I(x) is finite dimensional. The other direction is straightforward.

So the set of x where F[y]/I(x) is infinite dimensional is exactly

⋂

d≥0

{x ∈ F
m|dimI(x)=d ≤ dimH=d − 1}.

By the last proposition this is a countable intersection of algebraic sets. By the
Noetherian property of F[y], the intersection stabilizes after finitely many values of
d, and so the infinite intersection is also an algebraic set. �

Proposition 3.3. If F is algebraically closed and I ⊂ F[y] is a homogeneous ideal,
then Z(I) contains a non-zero point if and only if F[y]/I is infinite dimensional (as
a vector space over F).

Proof. We begin with the easy direction. Suppose that 0 6= y lies in Z(I). By homo-
geneity, the line through 0 and y also lies in Z(I). Now we consider the evaluation
map from F[y]/I to the functions on this line. Since F is algebraically closed, there
are infinitely many points on the line. For any finite subset of the points on the line,
a polynomial can take arbitrary values. Therefore, the rank of the evaluation map
is infinite, and the dimension of F[y]/I is infinite.

Suppose instead that 0 is the only point in Z(I). By the Nullstellensatz, the
radical of I is the ideal generated by y1, ..., yn. This use of the Nullstellensatz uses
the fact that F is algebraically closed. If I happens to be radical, then F[y]/I is F,
and we are done. In not, then we get some finite sequence of ideals I = I0 ⊂ I1 ⊂
... ⊂ IJ = (y1, ..., yn), where each ideal is formed by adding a radical element to the
previous ideal. By backwards induction on j, we check that Rj = F[y]/Ij is finite
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dimensional. This is true for j = J . Now Rj−1 is formed by adjoining a nilpotent
element to Rj. The inductive step is then straightforward. �

Assembling these three propositions gives the fundamental theorem of projection
theory.

4. Taking stock

We have now defined the polynomial FP . We proved that degFP ≤ αdegP for
some constant α. We proved that FP (x) = 0 if and only if the point x is flecnodal.
If x lies in a line in Z(P ), then x is obviously flecnodal and so FP (x) = 0.

Suppose that P is irreducible and that Z(P ) contains > α(degP )2 lines. The
polynomial FP vanishes on each of these lines. Since the number of lines is >
(degP )(degFP ), it follows that P divides FP , and so FP = 0 on Z(P ). We conclude
that every point of Z(P ) is flecnodal: at every point there is a direction V in which
P vanishes to fourth order.

The next step is to prove that the surface is actually ruled. Because every point is
flecnodal, the surface “looks nearly ruled” at every point. The next step is a local-
to-global argument: because there is locally always a line nearly in the surface, the
surface is globally ruled. This argument is quite different - it has to do more with
differential geometry than with algebra. We discuss it more next time.

Finally, we note that our set up so far is pretty flexible. For example, suppose we
define a point z to be t-flecnodal if there is a non-zero vector V so that ∇s

vP (x) = 0
for all s from 1 to t. By the same argument as above, we can construct a finite set
of polynomials FtP with degree ≤ α(t)degP so that z is t-flecnodal if and only if
FtP (z) = 0. If P is irreducible and Z(P ) contains > α(t)(degP )2 lines, then every
point of Z(P ) is t-flecnodal. The flecnode is defined with t = 3, because that’s the
smallest value of t where the local-to-global argument works. But we can choose to
work with any value of t, and it’s actually a little easier to prove the local-to-global
result with t = 4 or t = 10...

If a point lies in two lines in Z(P ) we can find two linearly independent vectors
V1, V2 where ∇s

V P (z) = 0 for all s. With a little modification of the technology,
we can build a polynomial RP that vanishes whenever there are two independent
directions in which P vanishes to order 4. We pick that up next time.


