
INTRODUCTION

In the last five years, several challenging problems in combinatorics have been
solved in an unexpected way using polynomials. This new approach is called the
polynomial method, and the goal of these notes is to study and explore it.

The polynomial method has roots in some algorithms about polynomials developed
in coding theory in the 80’s and 90’s. Ideas from these algorithms were then applied to
mathematical problems that aren’t obviously related to polynomials. Some problems
that seemed very hard can now be solved in a couple pages with this new perspective.

The following problem is in the background of the polynomial method. Consider
a field F and a finite set of points S ⊂ F

n.
Problem: Find a non-zero polynomial P that vanishes on S with degree as small

as possible.
For example, consider the points (j, 2j) ∈ R

2 with j = 1, ..., 106. What is the
lowest degree of a (non-zero) polynomial that vanishes on all of these points? Let me
try to find some polynomials that vanish on these points beginning with simple ones.
One polynomial that vanishes on all these points is (x− 1)...(x− 106). It has degree
106. Another is (y−2)(y−4)... which also has degree 106. I can be a little cleverer by
choosing a linear polynomial L1 that vanishes on the first two points, then a second
linear polynomial that vanishes on the next two points, etc. The product of these
linear factors has degree only 500,000.

We can get a better perspective on the problem by thinking about the general
situation of a finite set of points x1, ..., xs ∈ F

n. Let V (d) be the vector space of
polynomials of degree ≤ d in n variables over F. Let E be the evalution map defined
by

E(P ) := (E(x1), ..., E(xs)) .

The map E is linear, and the kernel of E is exactly the set of polynomials of degree
≤ d that vanish on the given points. Our original problem reduces to linear algebra.
Using linear algebra, we can draw two important corollaries.

Corollary 0.1. There is a polynomial-time algorithm to find a minimal degree poly-
nomial that vanishes on a given finite set.

(The running time is polynomial in the number of points s, and also in the dimen-
sion n. We will usually have a fixed n and consider s → ∞.)

Corollary 0.2. If dimV (d) > s, then there is a non-zero polynomial P of degree ≤ d
that vanishes on the given finite set.
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The dimension of V (d) is
(

d+n
n

)

≥ dn/n!. For n fixed and d large, dn/n! is a good
approximation of the dimension. Therefore, we get the following corollary.

Corollary 0.3. For any set of s points in F
n, there is a non-zero polynomial that

vanishes on the set with degree ≤ ns1/n.

Returning to our example, we see that there is a polynomial vanishing on the
million points {(j, 2j)|j = 1, ..., 106} with degree ≤ 2000. This polynomial is much
more efficient than the examples I came up with above. It’s extremely messy and it
would be very difficult to write down explicitly, but for simple abstract reasons we
know that it exists.

Here is one moral of this discussion. Suppose that we are trying to find a poly-
nomial with some special properties. One approach is to try to write down the
polynomial and find a clever formula. But this discussion gives another approach -
proving that such a polynomial exists by a dimension-counting argument. Sometimes
this approach is more effective than any polynomial that I could craft.

A bare outline of the polynomial method goes as follows.

(1) Begin with a problem about some points in a vector space.
(2) Find or consider a polynomial that vanishes at these points with degree as

small as possible.
(3) Use the polynomial to attack the problem.

After this general discussion, let’s mention some of the applications of this method.
I’m going to mention four applications that we’ll study in this course.

1. Algorithms in coding theory

Suppose F is a finite field with q elements and P : F → F is a polynomial of
low degree, degP ≤ q1/2. In the coding theory scenario, we could imagine that
this polynomial is a piece of data that we want to send over an unreliable channel.
In transmission, the data gets corrupted, and the other side receives a function
F : F → F. Let’s suppose that a slim majority of the data is correct: in other words
F (x) = P (x) for at least (51/100)q values of x. Is it possible to recover P from F ?
If so, can we do it efficiently?

As long as q is sufficiently large, it is possible to recover P from F in theory
because of a fundamental property of polynomials.

Lemma 1.1. If P : F → F has degree ≤ d and vanishes at more than d points, then
P is the zero polynomial.

(This simple lemma will have a lot of applications in our course.)
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Corollary 1.2. If q > 104, for any function F : F → F, there is at most one
polynomial P of degree ≤ q1/2 so that F (x) = P (x) for at least (51/100)q values of
x.

Proof. Suppose that P1 and P2 are such polynomials. Since P1 = F 51 % of the time
and P2 = F 51 % of the time, it follows that P1(x) = P2(x) for ≥ (2/100)q values of
x. So P1 − P2 is a polynomial of degree ≤ q1/2 with at least (2/100)q zeroes. If q is
big enough (2/100)q > q1/2 and so P1 − P2 = 0. �

In theory, we can recover P from F by trying all the polynomials of degree ≤ q1/2

until we find the one that agrees with F 51 % of the time. But this algorithm is very
inefficient. Berlekamp and Welch found an efficient algorithm to recover P from F .

Theorem 1.3. (Berlekamp-Welch, 1986) There is a polynomial time algorithm to
recover P from F .

Berlekamp and Welch consider the graph of P and the graph of F . The graph
of P is a nice algebraic curve in F

2. The graph of F contains a lot of points from
the graph of P , together with some error points. We are given the graph of F . We
don’t know which points lie in the graph of P and which are errors. In this cloud
of points, we are hoping to find a hidden algebraic structure - the graph of P . The
main idea of Berlekamp and Welch is to consider a lowest degree polynomial R(x, y)
that vanishes on the graph of F in F

2. (In fact, they consider the lowest degree
polynomial of the special form R(x, y) = R0(x) + yR1(x).) As we discussed above,
it’s possible to find this polynomial R in polynomial time. Then it turns out that
the zero set of R is exactly the graph of P together with a vertical line through each
error. In other words, for each e ∈ F where F (e) 6= P (e), the graph of R contains
the line x = e. With the help of R we can immediately tell which values of F agree
with P and which were corrupted. After that, it’s straightforward to recover P .

2. The finite field Nikodym conjecture

The next problem that we consider originates in geometry and analysis.
A set N in the cube [0, 1]n ⊂ R

n is called a Nikodym set if, for each point x ∈ [0, 1]n,
there is a line L(x) so that

• The point x lies in L(x).
• Except for x, L(x) ∩ [0, 1]n lies in N .

For example, if I remove the line y = 1/2 from the square [0, 1]2, the result is a
Nikodym set. If I remove a circle, then it isn’t. In the 1920’s, Nikodym proved the
following counterintuitive result:

Theorem 2.1. There are Nikodym sets of measure zero in each dimension n ≥ 2.
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The sets Nikodym constructed have full Hausdorff dimension, as do all known
constructions. This suggests the following conjecture:

Conjecture 2.2. Every Nikodym set N ⊂ [0, 1]n has Hausdorff dimension n.

This conjecture turns out to be related to many deep problems in analysis, and
it has come to play an important role. (There is also a more famous cousin, the
Kakeya conjecture). Although they may look rather arbitrary at first, the Nikodym
and Kakeya conjectures underlie a variety of important and natural problems in
Fourier analysis, PDE, and number theory. A lot of effort has gone into studying
the problem, and we are still far from resolving it. Faced with the difficult problem,
mathematicians have looked at cousin problems and toy problems that might give
some insight. For example, Tom Wolff formulated a finite field version.

Let F be a finite field with q elements. A set N ⊂ F
n is called a Nikodym set if,

for each point x ∈ F
n, there is an affine line L(x) so that

• The point x lies in L(x).
• Except for x, the line L(x) lies in N .

The analogue of the Nikodym problem is to ask how many points there must be
in a Nikodym set. The finite field Nikodym conjecture says that every Nikodym set
must have at least cnq

n points. For a while, the two problems seemed about equally
hard. About five years ago, Dvir proved the finite field Nikodym conjecture. The
proof was only a page long and it shocked a lot of mathematicians in the area. The
proof uses the polynomial method, somewhat in the spirit of the Berlekamp-Welch
algorithm.

Here is a sketch of the proof. Suppose that N is a small Nikodym set, with only
(2n)−nqn elements. By dimension counting, we can then find a non-zero polynomial
P that vanishes on N with degree at most (q/2). Fix a point x ∈ F

n, and consider
the line L(x). By the definition of a Nikodym set, at least q − 1 points of L(x) lie
in N . Therefore, P must vanish on q − 1 points of L(x). Since the degree of P is
< q − 1, P must vanish on the whole line L(x), in particular P (x) = 0. Now x was
arbitrary so P (x) = 0 at every point x ∈ F

n. Given that P vanishes at every point
and that the degree of P is < q, it’s not hard to show that P is the zero polynomial,
giving a contradiction.

Filling in all details of the proof takes two more short paragraphs, and we’ll do it
later. Previously, people tried hard to prove the result without this polynomial trick,
and it seems to be extremely difficult. The situation raises a lot of questions. Do
polynomials really play such an important role in this problem? If so, why? What
does the method have to do with the problem? We’ll come back to these kinds of
questions a number of times throughout the notes.

People tried to adapt the polynomial method to attack the original Nikodym
conjecture, but there are serious difficulties. The polynomial method hasn’t yet led
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to any significant progress on Nikodym-type problems in Euclidean space. But it
has had a lot of success in combinatorial problems involving finitely many lines in
Euclidean space.

3. The distinct distance problem

The polynomial method has led to solutions for several challenging problems in
extremal combinatorics, as well as giving new proofs and perspectives for some im-
portant known results. We will study most of these new proofs. The result that we
will spend the most time tackling is an estimate for the distinct distance problem in
the plane.

Suppose P ⊂ R
2 is a finite set with N elements. We let d(P ) denote the set of

non-zero distances between elements of P :

d(P ) := {|p − q|}p,q∈P,p 6=q.

(We are using the standard Euclidean distance on R
2.)

Let’s consider some examples.

(1) N generic points in the plane gives |d(P )| =
(

N
2

)

∼ N2.
(2) N evenly spaced points along a line gives |d(P )| = N − 1.

(3) N points arranged in a
√

N ×
√

N square grid gives |d(P )| ∼ N(log N)−1/2.

In the 1940’s, Erdős raised the question how small the distance set d(P ) could
possibly be. He worked out the example of the square grid, and he conjectured that
the square grid is minimal up to constant factors: in other words, any set of N points
should have |d(P )| ≥ cN(log N)−1/2. A number of people have proven lower bounds
for the distinct distance problem using different techniques. Before the polynomial
method, the best lower bound proved that the number of distinct distances is & N .864.
The book The Erdős Distance Problem, by Garibaldi, Iosevich, and Singer, describes
various approaches to the problem. Using the polynomial method, Nets Katz and I
proved the following theorem.

Theorem 3.1. (G.-Katz, 2010) For any set of N points in the plane, the number of
distinct distances is at least cN(log N)−1.

This proof is more difficult than the proof of finite field Kakeya or joints. It will
take us 40-60 pages all in all. There is a new ingredient coming from topology and
a new ingredient coming from ruled surfaces in algebraic geometry. Nevertheless,
the proof is pretty elementary, and I hope it will be accessible to a broad range of
readers.
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4. Number Theory

The polynomial method is also connected with work in number theory from the
early 20th century. In particular, there was an important breakthrough by Thue in
the study of diophantine equations. Thue was able to prove that many polynomial
equations have only finitely many integer solutions. Here are a couple of examples.

A. The polynomial y3 − 2x3 = 1 has only finitely many integer solutions.
B. The polynomial y4+6x2y2+7x3y+101x4 has only finitely many integer solutions.
These are just special cases of Thue’s general theorem.

Theorem 4.1. (Thue 1908) If P (x, y) is an irreducible homogeneous polynomial of
degree ≥ 3, and A is an integer, then the equation P (x, y) = A has only finitely many
integer solutions.

Before Thue, people usually studied single equations or small families of equations.
Thue’s theorem was much more general. Looking at irreducible polynomials is not
that big a restriction, because one can study reducible polynomials by considering the
factors. Being homogeneous is a restriction, but Siegel was able to generalize Thue’s
work to develop a systematic theory of diophantine equations in two variables.

Thue’s argument involved some ‘auxiliary polynomials’. In order to study a partic-
ular diophantine equation, like equation A above, Thue needed an infinite sequence
of ‘auxiliary polynomials’ with special properties. Thue tried to construct these poly-
nomials explicitly. He was able to do it in some examples like equation A, but he
couldn’t do it for many other equations. Then he realized that the auxiliary polyno-
mials needed to exist for every equation because of a simple counting argument like
the one at the beginning of this section. This was probably the most important idea
in Thue’s breakthrough.

Reviewing Thue’s work at the 1974 ICM, Schmidt described it as follows: “The
idea of asserting the existence of certain polynomials rather than explicitly construct-
ing them is the essential new idea in Thue’s work. As Siegel [1970] points out, a study
of Thue’s papers reveals that Thue at first tried hard to construct the polynomials
explicity (and he could actually do so [for equations of the form yd − Bxd = A]).”

5. Goals of the course

The polynomial method gives several strikingly short applications. The first goal
of the course is to study these. I’ll emphasize three examples: the Berlekamp-Welch
algorithm, the finite field Nikodym and Kakeya problems, and the joints problem.

These short proofs are hard to appreciate without context. The next goal is to learn
the context of these results. In particular, we will learn about incidence geometry:
combinatorial estimates about how lines and other basic geometric objects intersect
each other.
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The third goal of the course is to prove the estimate about the distinct distance
problem.

The fourth goal is to explore connections between the polynomial method and
different parts of mathematics. We will see some connections involving computer
science, algebraic geometry, topology, harmonic analysis, and number theory.

The fifth goal is to mull over some philosophical questions related to the polynomial
method. For example, what is special about polynomials? Why are polynomials
involved in these problems?


