
NAMBOODIRI LECTURE 3: INCIDENCE GEOMETRY AND POLYNOMIALS

IN FOURIER ANALYSIS

This lecture is about an open problem in Fourier analysis called the restriction problem. At
first sight, this problem looks unrelated to the previous lectures. The main goal of the lecture
is to understand how they are related – to see how this problem from Fourier analysis relates to
geometry, and incidence geometry, and polynomials.

We will be interested in a trigonometric series:

f(x) =

M∑
j=1

aje
iωj ·x.

The problem takes place in Rn: the point x lies in Rn and the frequencies ωj lie in Rn. The
coefficients aj are complex numbers. We pick a large radius R, and we suppose that the frequencies
ωj are evenly distributed on the sphere of radius R, with separation ∼ 1 (see Figure 1). The number
of different frequencies is then approximately the surface area of the sphere Sn−1(R), and so we get
M ∼ Rn−1. We also suppose that all the coefficients aj have norm |aj | = 1.

Under all these assumptions, we would like to estimate the moments of f on the unit cube
Q = [0, 1]n.

Question 1. If f(x) is a trigonometric series as above, then estimate the maximum possible size
of the integral ∫

Q

|f |p,

(in terms of R and p).

We will spend a good portion of this lecture just processing this question, trying to understand
what it means, and why it is interesting and difficult.

0.1. Visualizing the problem. Let us start by visualizing a single complex exponential a1e
iω1x.

We consider the set of points x where this complex exponential takes the value 1. Since |a1| = 1,
we note that

a1e
iω1·x = 1↔ ω1 · x ∈ 2πZ− phase(a1).

So the set where a1e
iω1·x = 1 is a union of parallel hyperplanes, perpendicular to the vector ω1.

The spacing between consecutive hyperplanes is 2π
R . The function a1e

iω1·x looks like a wave: if we
consider the real part, it has its peaks on the parallel hyperplanes described above, and it has its
troughs half way between two consecutive peaks.

Next let us visualize a second complex exponential, and think about how it interacts with the first
complex exponential. The set where a2e

iω2x = 1 is a union of parallel hyperplanes, perpendicular
to the vector ω2. We illustrate the situation in Figure 2. The blue lines represent the hyperplanes
where a1e

iω1x = 1 and the green lines represent the hyperplanes where a2e
iω2x = 1. We want to

understand the sum a1e
iω1x+a2e

iω2x. On the shaded dots, we have constructive interference: both
1
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terms are 1 or both terms are -1. At the x’s, we have cancellation: one term is 1 and the other is
-1. From this picture we can get a sense of how these two complex exponentials interact.

Now the reader should imagine adding a third complex exponential a3e
iω3x. When we extend

the picture, we will see a third color of hyperplanes oriented in a third direction. The pattern of
constructive interference vs. cancellation will become quite complicated. The trigonometric sum
f is a sum of a huge number of complex exponentials. To understand Question 1, we have to
understand how much constructive interference there is and how much cancellation there is in a
sum of many waves.

Understanding constructive interference vs. cancellation is a central theme of Fourier analysis
which comes up in many problems in both pure and applied math. Question 1 is one particular
problem about constructive interference vs. cancellation, but it has been studied very intensively,
and the ideas that have come out of this work have had applications in many other scenarios.

0.2. A random model for comparison. To get a perspective, let us consider what would happen
if we replaced the complex exponentials eiωjx with independent functions hj(x). Here we mean
independent in the sense of probability theory - as in the phrase independent random variables.
Suppose that each function hj goes from the unit cube Q to the unit complex numbers, and suppose
that the values of each hj are evenly distributed on the unit circle. In this independent case, the
behavior of the sum

∑
ajhj is governed by the law of large numbers. The law of large numbers

implies that with high probability,
∣∣∣∑M

j=1 ajhj(x)
∣∣∣ has size on the order of M1/2. More precisely,

we can say that ∣∣∣∣∣∣
M∑
j=1

ajhj(x)

∣∣∣∣∣∣ ≤ KM1/2,

except for a small set of points x whose measure decays exponentially in K. As a consequence, for
any exponent 1 ≤ p <∞, we get

∫
Q

∣∣∣∣∣∣
M∑
j=1

ajhj(x)

∣∣∣∣∣∣
p

dx ≤ CpMp/2. (1)

We refer to this behavior as square-root cancellation.
This random model gives us some perspective on our original problem. We want to understand

how close the functions eiωjx are to being independent of each other. What are the strongest, most
important correlations among these functions?

0.3. An example: all coefficients are 1. Now we return to trigonometric sums
∑M
j=1 aje

iωjx,

and we consider the example that all the coefficients aj are 1. If |x| ≤ 1
10R , then eiωjx is close to

1 for all of our frequencies ωj . Since aj = 1 for all j, we get pure constructive interference on the
ball defined by |x| ≤ 1

10R : in other words,

|f(x)| ∼M if |x| < 1

10R
.

This ball has volume ∼ R−n, and so we get a lower bound on the moments of f :∫
Q

|f |p & R−nMp.
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In particular, if p is large enough (computed below), then R−nMp is much larger than Mp/2,
and we don’t get square-root cancellation.

0.4. The restriction conjecture. In the late 1960’s, Stein conjectured that the moments of f are
always bounded either by square-root cancellation or by the last example.

Conjecture 2. (Stein) If f =
∑M
j=1 aje

iωjx with frequencies ωj as in the introduction and |aj | = 1,
then ∫

Q

|f |p .Mp/2 +R−nMp.

(Remark. We write A . B to mean either A ≤ CB or A ≤ C(logR)powerB. In this conjecture,
we actually need a logarithmic factor for some values of p. In Section 3, we will descibe an example
where the logarithmic powers are needed.)

Plugging in M = Rn−1, we can check when each term dominates. If p ≤ 2n
n−1 , then the first

term dominates and we have square root cancellation like for independent functions. If p > 2n
n−1 ,

then the second term dominates, and we don’t have square root cancellation. The critical exponent
p = 2n

n−1 is the most important.

If this conjecture is true, it means that the pure constructive interference on the ball B( 1
10R )

is the strongest, most important correlation among the functions eiωjx. If this conjecture is false,
it means that there is some other, subtler correlation which is even stronger (at least for some
exponents p). Either way, it would be very interesting to know.

Here is a brief summary of known results. In dimension n = 2, the conjecture was proven by
Fefferman in the 1970’s. For dimensions n ≥ 3, the conjecture is open in spite of a lot of effort by
many people. It is true for p = 2 by an easy argument – see the next section. It is also true if p
is sufficiently large (depending on the dimension n). For n = 3, the best current result says that
the theorem is true if p > 3.25 (see [G1]). The proof uses the polynomial method, as well as many
earlier ideas. In the rest of the lecture, we will describe some of these ideas.

The notes [T] are a great reference on the restriction problem. (I should probably mention here
that the restriction problem is usually phrased in terms of an integral over all the frequencies on
the sphere instead of a sum over a separated set of frequencies. The two versions of the problem
are equivalent, and I felt that the trigonometric is probably more accessible for a broad audience.)

1. Orthogonality

Now we begin to discuss how to prove bounds for our integral
∫
Q
|f |p. Our first bounds will be

based on the observationt that the functions {eiωjx} are (almost) orthogonal on the unit cube Q.
By orthogonality, we see that

∫
Q

|f |2 ∼
M∑
j=1

∫
Q

|eiωjx|2 = M.

This shows that Conjecture 2 is true for p = 2. (Holder’s inequality then implies the conjecture
is true for all p ≤ 2. The interest is in p > 2. )

Also, the triangle inequality gives a simple bound for the supremum of f :
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sup
x
|f(x)| = sup

x
|
M∑
j=1

aje
iωjx| ≤M.

Together, these two bounds give an upper bound for
∫
Q
|f |p for any p ≥ 2.

Proposition 3. If p ≥ 2, ∫
Q

|f |p .Mp−1.

Proof. ∫
Q

|f |p ≤ (sup |f |)p−2
∫
Q

|f |2 .Mp−2M.

�

The bound Mp−1 is bigger than the bound in Conjecture 2. We will refer to this argument as
“the orthogonality argument” because it basically boils down to orthogonality.

1.1. The sphere vs. the disk. Our frequencies ωj are evenly distributed on the sphere of radiusR.
For comparison, suppose that we consider frequencies ω̃j evenly distributed on an (n-1)-dimensional
disk of radius R – see Figure 3. We suppose that ω̃j are a 1-separated set of frequencies that lie in
the hyperplane with nth coordinate zero, and with |ω̃j | ≤ R. The number of frequencies ω̃j is still
∼ Rn−1, so we can still let j go from 1 to M . We let g be a trigonometric sum using frequencies
on the disk:

g(x) =

M∑
j=1

aje
iω̃jx.

The functions eiω̃jx are again (almost) orthogonal on the unit cube, so the orthogonality argument
applies to g, just as well as it did to f . Hence

∫
Q
|g|p .Mp−1. This bound for g is actually sharp

when all the coefficients aj are 1!
We can see this using a key feature of the disk setup: the functions eiω̃jx don’t depend on the xn

coordinate. Because of this observation, all the functions eiω̃jx are close to 1 when the first n − 1
coordinates of x lie in Bn−1( 1

10R ). In other words,∣∣∣∣∣∣
∑
j

eiω̃jx

∣∣∣∣∣∣ ∼M for x ∈ Bn−1(
1

10R
)× [0, 1].

Now a simple calculation shows that
∫
Q
|g|p &Mp−1 for all p ≥ 2.

Recall for comparison that in the sphere setup, the sum
∑
j e
iωjx has pure constructive interfer-

ence in the ball Bn( 1
10R ). The region Bn−1( 1

10R )× [0, 1] is significantly larger than the ball Bn( 1
10R )

– see Figure 4 – which makes the disk behave very differently from the sphere.
Stein realized that the sphere behaves differently from the disk. He proved estimates for the

sphere that improve on the orthogonality argument, estimates that hold for the sphere but don’t
hold for the disk. His arguments show how the curvature of the sphere relates to estimates for∫
|f |p. This connection between the geometric idea of curvature and Fourier analysis is an exciting
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discovery, and the full strength of the connection is not yet understood today because Conjecture
2 is still wide open.

In the next sections, we will explain one way that the curvature enters into the estimates.

2. The contribution from a small cap

We want to understand the behavior of the sum f =
∑
j aje

iωjx on the unit cube. Understanding
the whole sum is difficult, so it is reasonable to warm up by trying to understand just a small piece
of the sum. Let θ ⊂ Sn−1(R) be a spherical cap of some radius much smaller than R. We let fθ
denote the contribution to f from the frequencies in θ:

fθ(x) :=
∑
ωj∈θ

aje
iωjx.

If θ is small enough, can we get a good understanding of fθ on the unit cube? It turns out that if
θ is a cap of radius 1

100R
1/2, then we have a very good understanding of the behavior of fθ on the

unit cube. The reason is that for this radius, the cap θ lies very close to a hyperplane. The cap θ
lies inside of a rectangular slab with one short direction of length 1

10 and n − 1 long directions of

length ∼ R1/2: see Figure 5. The radius 1
100R

1/2 was chosen just so that the thickness of the slab
would be significantly less than 1.

If |ω − ω′| < (1/10), then the functions eiωx and eiω
′x look quite similar on the unit cube.

Therefore, fθ behaves almost as if all the frequencies ωj ∈ θ were contained in a hyperplane. The
function fθ behaves a lot like the function g in the disk problem from the last subsection. This
leads to some important consequences about the function fθ.

(1) The orthogonality argument gives sharp estimates for
∫
Q
|fθ|p for any p.

(2) |fθ(x)| is essentially constant on line segments perpendicular to θ and contained in Q.

The second item is analogous to the fact that the function g(x) did not depend on the xn coordinate.
Figure 6 shows a picture of the cap θ and a line segment in the unit cube which is perpendicular
to θ. The norm |fθ(x)| is morally almost constant along this green line segment.

Let us use this information to try to visualize fθ. To help with the visualization, we pick some
threshold λ > 0, and we color a point x ∈ Q green if |fθ(x)| > λ. Since |fθ(x)| doesn’t change much
when we move in the direction perpendicular to θ, the green set should be a union of line segments
that are perpendicular to θ. A more careful analysis shows that the green set should be a union of
green cylinders of radius ∼ R−1/2 and length ∼ 1, with their long axis perpendicular to θ. Figure
7 shows a picture of the cap θ and the green set inside of Q.

There are a range of possible behaviors of |fθ|. At one extreme, |fθ| can be large in a single
cylinder of radius ∼ R−1/2 and small everywhere else. This is the most concentrated behavior of
|fθ|: in this case max |fθ| is the largest, and it also gives the largest value of

∫
Q
|fθ|p for any p > 2.

At the other extreme, |fθ| can be essentially constant on the whole cube Q. This leads to the
smallest value of

∫
Q
|f |p. And we can have any intermediate behavior: |fθ| can concentrate in any

number of green cylinders of radius R−1/2. Figure 8 illustrates this range of behaviors.
Now that we understand fθ for a single cap θ of radius ∼ R1/2, we have to understand how

the contributions from different caps interact. We cut the sphere Sn−1(R) into disjoint pieces θ
which are each roughly spherical caps of radius ∼ 1

100R
1/2. Then our original function f is a sum

of contributions from the caps:
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f(x) =
∑
θ

fθ(x).

Each function fθ behaves in the way we described above. In Figure 9, we show Sn−1(R) divided
into several caps, which we draw in different colors. Then we show the corresponding functions fθ
in the unit cube. In the unit cube, we draw a set of green cylinders which mark the region where
the contribution from the green cap is large, a set of blue cylinders that mark the region where
the contribution from the blue cap is large, etc. Note that the different colored cylinders point in
different directions. This has to do with the curvature of the sphere. The blue cylinders point in
the direction normal to the blue cap, and because of the curvature of the sphere, each cap has a
distinct normal direction.

Figure 9 is one of my favorite pictures in Fourier analysis, and explaining it is one of the main
goals of this lecture. The picture is supposed to help visualize how the functions fθ are related
to each other. In the next section, we begin to discuss how this setup can be used to bound∫
Q
|
∑
θ fθ|p.

3. Intersection patterns of tubes in Fourier analysis

In this section we start to explore how the intersection pattern of the tubes in Figure 9 is related
to the size of

∫
Q
|f |p. To get started, we consider the very special case that all these tubes are

disjoint. In other words, we suppose that the functions fθ have disjoint support. In this special
case, we have ∫

Q

|f |p =
∑
θ

∫
Q

|fθ|p.

Recall from the last section that we have a good understanding of each function fθ. In particular,
we have a sharp upper bound for

∫
Q
|fθ|p. Plugging this bound into the right-hand side, we get a

sharp upper bound for
∫
Q
|f |p, proving Stein’s conjecture in the case when fθ have disjoint supports.

Here is a stranger example. Suppose that Figure 9 has only one tube of each color – exactly one
tube for each cap θ. If we choose the tubes so that the all go through the center of Q, then the
tubes will cover most of Q and a typical point in their union will lie in ∼ 1 tube. In the 1920’s,
Besicovitch constructed a way to arrange the tubes (still one tube for each cap θ) so that their union
has area ∼ (logR)−1, and a typical point in the union lies in ∼ logR tubes. There are nice pictures
of this arrangement of tubes in the wikipedia article on Besicovitch sets, among other places. In
the early 70’s, Fefferman used Besicovitch’s construction to build a function f where

∫
Q
|f |p is on

the order of (logR)powerMp/2. This example came as a great surprise to people. It shows that
the logarithmic factor is necessary in the restriction conjecture. It is an important open problem
whether the factor logR in Besicovitch’s example can be increased to a power of R. This problem
is called the Kakeya problem, and it is closely related to the restriction problem.

So the main worry is that the tubes in Figure 9 have many rich intersections. Most of the work on
the restriction problem proceeds by studying the intersection pattern of the tubes, using geometry
and combinatorics to estimate the number of rich intersections, and using this estimate to help
bound

∫
Q
|f |p. This strategy goes back to Fefferman and Cordoba in the 1970’s, but it was greatly

generalized by Bourgain in the early 1990’s. Using this method, he was able to prove deep new
estimates about the restriction problem in dimension n ≥ 3, breaking new ground in a direction
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where there had been no progress in a long time. This development is very well described in the
notes [T].

In the late 1990’s, Tom Wolff made the analogy between this problem about rich intersections of
thin tubes and problems in incidence geometry like the Szemerédi-Trotter problem. To help make
the analogy clear, let’s recall the setup of the Szemerédi-Trotter theorem from Lecture 1.

We let L denote a set of lines.

Pr(L) := {x ∈ R2 so that x lies in at least r lines of L}.

Pr(L) := max
|L|=L

|Pr(L)|.

The Szemerédi-Trotter theorem estimates Pr(L) up to a constant factor. Our current situation has
a similar flavor. We have a bunch of thin tubes pointing in different directions, and we want to
understand how many r-rich intersections there can be.

At the time Wolff started thinking in this direction, incidence geometry and Fourier analysis
were very separate communities. Wolff learned the ideas from this other field, especially the cutting
method from [CEGSW] that we discussed in Lecture 1, and he applied them to prove new hard
theorems in Fourier analysis (cf. [W1] and [W2]). Ever since then, the two fields have been closely
connected and new ideas in one field often lead to some progress in the other.

In particular, the polynomial partitioning method that we discussed in Lecture 2 has led to some
small progress on the restriction conjecture in three dimensions. In Lecture 2, we discussed using
polynomial partitioning to estimate the number of r-rich intersection points of lines in R3. That
argument can be adapted to study the restriction conjecture in R3. In the rest of the lecture we
describe how to set up the argument, following [G1].

4. Polynomial partitioning and restriction

Recall that PolyD(R3), the space of polynomials of degree at most D on R3, has dimension ∼ D3.
Therefore, based on parameter counting considerations, it is reasonable to try to find a polynomial
that divides something into ∼ D3 equal pieces. Using the partitioning argument from [GK], it
follows that for any D ≥ 1, there is a non-zero polynomial P ∈ PolyD(R3) so that Q \ Z(P ) is a
disjoint union of ∼ D3 open cells Oi, and so that for each Oi,∫

Oi

|f |p =
1

# of cells

∫
Q

|f |p.

Figure 10 shows a picture of Z(P ) inside of Q. The zero set Z(P ) is shown in red, over the
background of the blue and green cylinders which show the regions where different fθ are big.

A line can enter at most D + 1 of the cells Oi, because if P vanishes at more than D points of
a line, then the whole line must lie in Z(P ). This fact played a crucial role in the application of
polynomial partitioning to incidence geometry, which we talked about at the end of Lecture 2.

In the setting of Fourier analysis, we are dealing not with perfect lines but with thin cylinders
of radius R−1/2. Is it true that a thin cylinder can also enter only D + 1 cells? No, a thin cylinder
can enter far more cells. We tried to give some sense of this in Figure 10. In the figure, there are
four cells. Any line enters at most three cells, but the purple cylinder enters all four cells. In fact,
the purple cylinder contains the central singular point of Z(P ), and even a tiny neighborhood of
this singular point intersects all four cells.
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To deal with this issue, we separate Q into a part near Z(P ) and parts far from Z(P ). Let W be
the R−1/2-neighborhood of Z(P ), and let us recall that R−1/2 is the radius of our thin cylinders.
We let O′i = Oi \W , the part of Oi which is not too close to Z(P ). We call O′i a shaved cell.

Lemma 4. Each cylinder T of radius R−1/2 enters at most D + 1 of the shaved cells O′i.

Proof idea. Suppose that T is the R−1/2 neighborhood of a line `. We know that ` enters at
most D + 1 cells Oi. So we just have to check that if T enters a shaved cell O′i, then ` enters the
original cell Oi. Indeed, suppose that x′ ∈ T ∩O′i. Since x′ is not in W , we know that the distance
from x′ to the boundary of Oi is at least R−1/2. But the distance from x′ to the line ` is at most
R−1/2, and so there must be a point x ∈ ` which lies in Oi.

We can now very roughly sketch the method of bounding
∫
Q
|f |p. We divide the integral into a

contribution from W , and contributions from the shaved cells O′i.∫
Q

|f |p =

∫
W

|f |p +
∑
i

∫
O′

i

|f |p.

If the contribution of W dominates, it is possible to bound the problem using 2-dimensional
methods. Recall that the restriction conjecture was proven in two dimensions in the 1970’s. The
region W is a narrow neighborhood of the two-dimensional surface Z(P ), and the same methods
that work to study a 2-dimensional cube can be adapted to give good estimates for the contribution
of W .

If the contribution of the cells dominates, then we can study the problem using induction. In
this case, the total integral is approximately D3 times the contribution of a typical shaved cell
O′i. We know that each tube only enters ∼ D out of the ∼ D3 cells. So a typical cell intersects a
fraction ∼ 1

D2 of the tubes. By induction on the number of tubes, we can get an estimate for the

contribution of a typical cell, which then gives a bound for
∫
Q
|f |p. With the current technology,

this inductive argument closes for p > 3.25.

5. Conclusion and future directions

In hindsight, the main character in these lectures was the method of polynomial partitioning.
Polynomial partitioning gives a nice proof of the Szemerédi-Trotter theorem, one of the main results
discussed in the first lecture. It plays a major role in the proof of the distinct distance conjecture,
the subject of the second lecture. And it is also useful for studying the restriction conjecture in
Fourier analysis, which looks at first to be a very different subject.

The polynomial partitioning argument is based on two fundamental facts about polynomials,
which we emphasized in the first lecture:

• The dimension of PolyD(Rn) ∼ Dn.
• If P ∈ PolyD(Rn) vanishes at D + 1 points on a line `, then P vanishes on `.

These two simple facts belong to the undergraduate algebra curriculum. They work well together
as a team, and I think it’s remarkable how many consequences they have. In these lectures, we talked
about applications in incidence geometry and in Fourier analysis. There are also other applications
in computer science and in differential geometry (see section 2 of [G2] for an introduction to these
directions).

I would like to end by talking a little about future directions. The argument that we briefly
sketched proves the restriction conjecture in R3 in a certain range of values of p: p > 3.25. This
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result slightly improved the known range of exponents p, but it is far from solving the full problem.
I will try to explain where the argument was not sharp and this will point to some future directions.

If we unwind the inductive argument, we can describe a hypothetical example which is the worst-
case scenario in our argument. This hypothetical example probably doesn’t exist, and if it did it
would be a counterexample to the restriction conjecture. In this hypothetical example, at the first
step of the argument, the cells dominate. We examine each cell using the same argument, so we
subdivide each cell into smaller cells. We subdivide for some number of steps, say s steps, and we
now have D3s small cells, and each tube enters ∼ Ds of the small cells. Now when we examine each
of these small cells, the contribution to

∫
|f |p is concentrated near an algebraic surface (analogous

to the region W ). This algebraic surface may well be a plane, and so in each small cell,
∫
|f |p is

dominated by the contributed from a thin slab. Each of these thin slabs is criss-crossed with the
tubes from Figure 9. Also, the different slabs need to face in different directions. See Figure 11 for
a rough picture of this hypothetical example.

For any individual cell, we can describe the worst-case arrangement of tubes in that cell. Our
bound comes from taking the worst-case scenario in each cell and adding them up. But each tube
actually enters many cells, and it seems unlikely that the worst-case scenario can really occur in
every cell. If I try to build such an example, here is what happens. I can clevely arrange the tubes
to give the worst-case scenario in a particular cell, call it Cell 1. Now each of these tubes that goes
through Cell 1 intersects many other cells. Consider a particular tube T , and let Cell 2 be one of
the other cells that T enters. If I try to arrange the tubes to achieve the worst-case scenario in Cell
2, I find that the tube T is not in the right place. If I move T to get the worst-case scenario in
Cell 2, then it is no longer in the right position to give the worst-case scenario in Cell 1. It’s very
difficult - and probably impossible - to fit together the puzzle pieces to get the worst-case scenario
in every cell. But it’s hard to prove anything about this – it’s hard to keep track of how what is
going on in one cell is related to what is going on in the other cells.

This issue of keeping track of the relationships between the different cells comes up in both
Fourier analysis and incidence geometry. It comes up in all of the problems we’ve discussed in these
lectures. To give one final example, it comes up in studying the structure of nearly sharp examples
for the Szemerédi-Trotter theorem.

Recall from the beginning of Lecture 2 that for a large range of the parameters, all the known
roughly sharp examples for the Szemerédi-Trotter theorem are integer grids. It seems plausible
that all the roughly sharp examples really are integer grids, and it seems likely that they have a
lot of algebraic structure in some sense. But we can prove almost nothing about the structure
of near-sharp examples. It is a funny situation. Just counting up what happens in each cell and
adding gives sharp bounds for |Pr(L)|, but it tells us nothing about examples that are close to these
sharp bounds. The structural properties of near-sharp examples have to do with the relationships
between what is happening in different cells. Understanding these relationships better is a major
issue in the field.
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