
NAMBOODIRI LECTURE 1: INTRODUCTION TO THE POLYNOMIAL

METHOD AND INCIDENCE GEOMETRY

Thank you for the invitation to give these lectures. I’m excited to be here. I want to tell you
about some applications of polynomials to problems in combinatorics and Fourier analysis. What
I think is interesting here is that the statements of the problems do not involve polynomials, but it
turns out that polynomials provide a crucial structure under the surface.

I learned about this technique from a paper by Zeev Dvir in 2008. Dvir [D] proved a conjecture
called the finite field Kakeya conjecture on the borderline between combinatorics and harmonic
analysis. People in the field had believed that this problem was a really hard conjecture, but the
proof is only two pages long, and it only requires an undergraduate background to understand.
The proof uses a trick with polynomials, which is related to ideas from error-correcting codes, one
of Zeev’s areas of study. Since then, a number of mathematicians have been exploring what else
this trick can do. So my goal for these lectures is to explain how this trick works, look at some
applications, and think about how it fits into mathematics.

I am currently working on a book which will explain the topics of these lectures in a lot more
detail. I hope that it will be ready in about a year.

1. The joints problem

Let us look at a short proof using this polynomial trick. Our first proof solves a problem about
lines in R3 called the joints problem.

Let L denote a set of L lines in R3.

Definition 1. A point x ∈ R3 is a joint of L if x lies in three lines of L that are not coplanar.

J(L) := {x ∈ R3|x lies in three lines of L that are not coplanar}.

The joints problem is to estimate

max
|L|=L

|J(L)|.

For example, we consider a 3D grid.

L := {Axis parallel lines thru an S × S × S grid of points}.
Each point of the grid is a joint of L, so |J(L)| = S3. There are S2 lines of L in each coordinate

direction, and so L = 3S2. Therefore, in this example,

|J(L)| ∼ L3/2.

In the early 90’s, [CEGPSSS] proposed the joints problem and raised the question whether the
exponent 3/2 is optimal. There were a sequence of interesting partial results, but a sharp estimate
seemed very difficult before the polynomial method. Now we can give a two page proof.

Theorem 1. |J(L)| ≤ 10L3/2.
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(The key idea in the proof comes from [D]. The theorem was first proven in [GK], and it was
simplified and generalized in [KSS] and [Q].)

The main lemma in the proof says that there is always a line `0 ∈ L that does not contain too
many joints.

Main Lemma. There exists `0 ∈ L so that

|J(L) ∩ `0| ≤ 3|J(L)|1/3.

For comparison, in the grid example, every line contains S = |J(L)|1/3 joints.

Proof. We let P be a minimal degree (non-zero) polynomial that vanishes on J(L).

Claim 1. There exists a line `0 ∈ L where P does not vanish identically.

We prove claim 1 by contradiction: suppose that P vanishes on every line of L. Consider a joint
x ∈ J(L). The point x lies in three lines `1, `2, `3 ∈ L. Let vi be a tangent vector to `i. Since P
vanishes along `i, we see that the derivative of P at x must vanish in the direction of `i:

∇P (x) · vi = 0 for all i.

Since the lines `1, `2, `3 are not coplanar, the vectors vi form a basis of R3. Therefore, we conclude
that ∇P (x) = 0. In other words, the three partial derivatives ∂1P , ∂2P , and ∂3P must vanish on
J(L). The degree of ∂iP is strictly smaller than the degree of P . Since P is a non-zero polynomial,
these partial derivatives are not all zero, and we arrive at a contradiction: a polynomial of lower
degree that vanishes on J(L).

To prove the main lemma, we will show that the line `0 from Claim 1 contains few joints. The
polynomial P has helped us to find this line. The intuition is that P vanishes on the “important”
lines in the configuration but not on the unimportant lines. For example, consider a 2 × 3 grid
of lines in the plane, as in Figure 1. (The figures for each lecture are in a separate file on my
webpage.) Notice that there are two horizontal lines that go through three points in the grid, and
some vertical lines that go through only two points. The lowest degree polynomial that vanishes on
these six points has degree 2: its zero set consists of the two horizontal lines. So the lowest degree
polynomial vanishes on the lines containing three points of the grid, but not on the lines containing
two points of the grid.

Next we have to estimate the number of joints on `0.

Claim 2. If P does not vanish on `0, then |J(L) ∩ `0| ≤ DegP .

This follows immediately from a fundamental fact about polynomials:

Vanishing Lemma. If P vanishes at > DegP points on a line `, then P |` = 0.

So to bound the number of joints on `0, it just remains to estimate DegP .

Claim 3. DegP ≤ 3|J(L)|1/3.

To prove this claim, we have to show that there is some non-zero polynomial of degree at most
3|J(L)|1/3 that vanishes on J(L). We do this by linear algebra on the space of polynomials.

PolyD(Rn) := {polynomials on Rn of degree at most D}.
A crucial fact in all our arguments is that PolyD(Rn) is a vector space of dimension ∼ Dn.

Lemma 2. Dim PolyD(Rn) > n−nDn.
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Proof. A basis for PolyD(Rn) is given by the monomials xD1
1 , ..., xDn

n with
∑
Di ≤ D. In particular,

we can choose any degrees 0 ≤ Di ≤ D/n, and so the size of the basis is more than Dnn−n. �

(It’s also not hard to compute the exact dimension of PolyD(Rn). This would lead to a slightly
better constant in the joints theorem.)

Using this dimension bound, we can find polynomials of controlled degree that vanish on a given
set.

Lemma 3. If X ⊂ Rn is a finite set, then there is a non-zero polynomial Q so that

• Q vanishes on X
• DegQ ≤ n|X|1/n := D

Proof. Because of the last lemma, we can check that for D = n|X|1/n,

Dim PolyD(Rn) > |X|.

Suppose that X = {x1, x2, ...}. Now we consider the evaluation map EX : PolyD(Rn) → R|X|
defined by

EX(Q) = (Q(x1), Q(x2), ..., ).

The map EX is linear, and by dimension counting, we see that the kernel of EX is non-trivial. �

By Lemma 3, we know that there is some polynomial which vanishes on the joints of L and has
degree at most 3|J(L)|1/3. Since P has minimal degree, DegP ≤ 3|J(L)|1/3. This finishes the proof
of Claim 3 and hence the proof of the main lemma. �

Now we quickly explain how the main lemma implies Theorem 1. Let J(L) be the maximum
number of joints formed by any configuration of at most L lines. The main lemma implies that

J(L) ≤ J(L− 1) + 3J(L)1/3.

Indeed, given any configuration of L lines, one of them contains at most 3J(L)1/3 joints, and the
remaining L− 1 lines determine at most J(L− 1) joints.

Using this argument repeatedly, we see that

J(L) ≤ J(L− 1) + 3J(L)1/3 ≤ J(L− 2) + 2 · 3J(L)1/3 ≤ ... ≤ L · 3J(L)1/3.

Rearranging gives J(L)2/3 ≤ 3L, and raising both sides to the power 3/2, we get J(L) ≤ 10L3/2 as
desired. This finishes the proof of Theorem 1.

Comments. No one has any idea how to prove the joints theorem without mentioning poly-
nomials. In fact, it is not easy to prove an estimate of the form |J(L)| ≤ CL1.99. It might be
interesting for the reader to try to find their own proof of this much weaker fact.

I spent a lot of time thinking about why polynomials should play a crucial role in this question. It
still seems a little mysterious to me, but I found it helpful to highlight two facts about polynomials
that played a key role in this argument.

• Dim PolyD(Rn) ∼ Dn.
• If P ∈ PolyD(Rn) vanishes at > D points of a line `, then P |` = 0.
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The first key fact says that there are lots of polynomials. The second key fact says that polynomials
behave rather rigidly on lines. When we pick a polynomial P ∈ PolyD(Rn), we have ∼ Dn degrees
of freedom at our disposal, and this gives us a lot of flexibility. But then, when we consider P
restricted to a line, it behaves surprisingly rigidly, with only ∼ D degrees of freedom. These facts
show that polynomials have a special relationship with lines. The ratio between Dn and D gives
us a kind of leverage which powers the proof of the theorem.

The statement of the joints theorem only involves points, lines, and planes. So it might sound
reasonable at first to try to prove the joints theorem while only mentioning points, lines, and
planes. The paper [GS] investigates how much one can prove in this way. It gives a list of standard
properties of points, lines, and planes, and it shows that if we are only allowed to use these standard
properties, then it is impossible to prove that |J(L)| . L1.99.

The proof of the joints theorem brings into play a little bit of algebraic geometry. When I started
working in this area, I hadn’t thought about algebraic geometry since the first semester of graduate
school, and it’s been interesting to go back to it with these applications in mind. My knowledge of
algebraic geometry is still very basic and naive, but there is one point which puzzled me in graduate
school and makes more sense now. At the beginning of my graduate class, we defined an algebraic
set, and then we spent a good bit of time defining various rings of functions on an algebraic set. In
order to study, for example, the zero set of a degree 3 polynomial, we began by constructing a ring
involving much higher degree polynomials. It didn’t seem obvious to me that this was a natural way
of answering questions about a degree 3 polynomial: might we not be “reducing” these questions
to harder questions? It seems to me now that this strategy is not obvious but is an important
insight of algebraic geometry: we can learn a lot about a degree 3 polynomial by probing it with
polynomials of all degrees. The proof of the joints theorem fits into this philosophy: in order to
understand the intersection patterns of lines in R3, we have to probe the lines with very high degree
polynomials.

2. Incidence geometry

The joints problem is easy to state, but it may look a little arbitrary. So I wanted to step back
now and put it in context by talking about the field of combinatorics that it fits into, which is
called incidence geometry. Incidence geometry is the field of combinatorics that studies the possible
intersection patterns of lines or circles or other simple geometric shapes. In this lecture and the
next lecture, I’ll tell you about some of the big theorems and ideas, some hard open questions, and
about the influence that this polynomial trick has had on the field.

Let L denote a set of L lines in R2.

An r-rich point of L is a point that lies in at least r lines.

Pr(L) := {x ∈ R2|x lies in at least r lines of L}.
One of the basic questions about the intersection patterns of lines in the plane is to estimate

Pr(L) := max
|L|=L

|Pr(L)|.

Let us consider some examples. We illustrate these in Figure 2.
A. If we pick Lr−1 points, and we draw r lines through each point, we get a configuration of

lines with Lr−1 r-rich points. We call this the ‘stars’ configuration.
B. If we pick L generic lines, then we get

(
L
2

)
∼ L2 2-rich points, but no 3-rich points.
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C. A grid pattern. We can get ∼ L2 3-rich points by arranging the lines in a grid, with L/3
vertical lines, L/3 horizontal lines, and L/3 diagonal lines at slope 1. (See the second picture in
Figure 2.) If we want 4-rich points, we can add lines lines at slope -1. (See the third picture in
Figure 2.) If we want 5-rich points, we can add lines at a fifth slope, such as -1/2. (See the fourth
picture in Figure 2.) A calculation shows that this grid pattern yields a configuration of lines with
∼ L2r−3 r-rich points.

The most fundamental theorem of incidence geometry says that these examples are sharp up to
a constant factor:

Theorem 4. (Szemerédi and Trotter, 1983, [ST])

Pr(L) ≤ C max(Lr−1, L2r−3). (ST )

If r & L1/2, then the first term dominates, and the stars example is sharp. If r . L1/2, then the
second term dominates, and the grid example is sharp.

2.1. First upper bounds. The first upper bounds in this problem are based on the Euclidean
axiom:

Two lines intersect in at most one point. (E)

We can use this lemma to bound Pr(L) by a counting argument:

Lemma 5. Pr(L) ≤
(
L
2

)(
r
2

)−1 ∼ L2r−2.

Proof. Suppose L is a set of L lines. For each point x ∈ Pr(L), list all the pairs of lines in L that
intersect at x. For each x, we have a list of at least

(
r
2

)
pairs. By the Euclidean axiom, any pair

of lines intersects in at most one point, so the total number of pairs of lines in all these lists is at
most

(
L
2

)
. Therefore, |Pr(L)|

(
r
2

)
≤
(
L
2

)
. �

Is this the only bound for Pr(L) that follow from the Euclidean axiom? Perhaps surprisingly,
there is a subtler counting argument that gives additional bounds.

Lemma 6. If r ≥ 2L1/2, then Pr(L) < 2Lr−1.

For r ≥ 2L1/2, this estimate is sharp up to a constant factor, and it matches the behavior of the
stars example.

Proof. Suppose that L is a set of L lines. We will give a proof by contradiction, so suppose that
|Pr(L)| ≥ 2Lr−1. Now choose a subset P ′ ⊂ Pr(L) with 2Lr−1 points. Since r ≥ 2L1/2, |P ′| ≤ r/2.
Each point of P ′ lies in r lines of L. But because of the Euclidean axiom, less than r/2 of those
lines can intersect any other point of P ′! Therefore, the number of lines L is bigger than |P ′|(r/2).
But |P ′|(r/2) = (2Lr−1)(r/2) = L. This contradiction shows that |Pr(L)| < 2Lr−1. �

These two lemmas give some bounds, but they don’t prove Theorem 4. One may wonder if there
is an even more clever way to use the Euclidean axiom to get better bounds. It turns out that the
Euclidean axiom alone is not enough to prove Theorem 4.
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2.2. The main obstacle. To understand how much we can prove with just the Euclidean axiom,
we consider the following example. Let Fq denote a finite field with q elements. Let L be a set of
lines in F2

q. Lines in F2
q obey the axiom (E), and so |Pr(L)| obeys the bounds in Lemmas 5 and 6.

But now suppose that L is the set of all lines in F2
q. Every point of F2

q lies in q + 1 different lines,

and so Pq(L) = F2
q consists of q2 points. But L = |L| = q2. The size of Pq(L) is sharp for Lemma

5 and much too big to be consistent with Theorem 4.
This example helps to clarify the problem and makes it more interesting. To prove Theorem 4,

we have to bring into play something besides the Euclidean axiom, something which is true in R2

but false over finite fields. There are several nice proofs in the literature, and in some way they all
use the topology of R2. One of the main achievements of incidence geometry is to understand how
to use topology to prove combinatorial bounds. Let me show you one of the ideas for connecting
topology and incidence geometry.

2.3. The cutting method. In addition to the L lines of L let us draw D auxiliary red lines in the
plane. (See Figure 3.) These D red lines cut the plane into ∼ D2 regions called cells. The cutting
method is a divide-and-conquer argument, where we estimate the number of r-rich points in each
cell and add up the results. A crucial point is that each line can only enter a small fraction of the
cells.

Lemma 7. A line can enter at most D + 1 of the cells.

Proof. To go from one cell to another, a line must cross one of the red lines. But a given line
intersects each red line in at most one point, and so it crosses the set of red lines at most D
times. �

Note that this argument uses the topology of R2 and doesn’t make any sense over finite fields.
We define the cells to be the connected components of the complement of the red lines, and so we
need the idea of a connected component just to get started.

The divide-and-conquer approach works best if we can divide the problem into roughly equal
pieces. Since each line enters ∼ D of the D2 cells, an average cell intersects ∼ L/D lines of L. We
say that the lines are (roughly) equidistributed if

Each cell intersects . L/D lines of L. (EquiL)

If we are able to achieve equidistribution, then we can bound the number of r-rich points in
each cell by Pr(L/D). There could also be some r-rich points in the cell walls. We can bound the
number of these points using the fact that each line intersects the cell walls in at most D places.
All together, there are at most DL intersections between the lines of L and the cell walls. Each
r-rich point involves r intersections, and so the number of r-rich points in the cell walls is at most
DL/r. So as long as we can arrange (EquiL), then we get the following bound:

Pr(L) . D2Pr(L/D) +
DL

r
. (∗)

We can bound Pr(L/D) using Lemmas 5 and 6. If we plug these bounds into (∗) and then
optimize over D, we get the Szemerédi-Trotter bound (ST).

When I first did this computation, I thought that I understood the main idea of the proof of
Theorem 4. I thought that (EquiL) wouldn’t be a big deal: if we choose D red lines without thinking
too much, we would probably get close to equidistribution – why would the lines of L clump into
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only a few cells? Looking back now, I think this belief was totally wrong. Equidistribution is a
very subtle and important point.

Why is equidistribution hard? For one perspective, suppose that we tried to equidistribute the
points of Pr(L). We say that these points are (roughly) equidistributed if

Each cell contains . D−2|Pr(L)| points of Pr(L). (EquiP )

In general, it is impossible to choose D red lines to equidistribute a set of points. For example,
suppose that γ is a convex curve in the plane and Pr(L) ⊂ γ. Each red line intersects γ in at most
two points, and so γ lies in at most 2D of the cells. So all the points of Pr(L) lie in only 2D of the
∼ D2 cells! (See Figure 4.)

Here is another perspective on why equidistribution is hard. A line is determined by two real
parameters. So when we choose D red lines, we have 2D real parameters at our disposal. But
(EquiL) or (EquiP) asks that each of D2 cells has an equal share of something. So we have 2D
real parameters and we are hoping to satisfy D2 conditions. Roughly speaking, we have 2D real
parameters, and we are hoping to be able to solve D2 equations. Without some special information
about these equations, this strategy sounds unlikely to work!

The paper [CEGSW] deals with the equidistribution problem using a randomization argument.
They choose the D red lines to be a random subset of D lines from L. This set of lines has some
very good properties, although it doesn’t quite obey (EquiL). The paper then constructs a clever
subdivision of these cells, which leads to a cell decomposition obeying (EquiL).

2.4. Polynomial partitioning. Using polynomials, we now sketch a different way to finish the
proof of Szemerédi-Trotter, following [GK2] and [KMS]. Instead of cutting the plane into cells using
D red lines, we cut it using a degree D algebraic curve: the zero set of a polynomial P ∈ PolyD(R2).
(See Figure 5.)

By the vanishing lemma, it is still true that a line can only cross Z(P ) in at most D points, and
so it is still true that each line enters at most D + 1 cells. So a degree D curve works just as well
in the cutting method as D lines!

There are far more ways to choose a degree D curve than there are to choose D lines, and this
extra flexibility allows us to achieve equidistribution. Choosing D red lines gives us only ∼ D
parameters to play with, but choosing a polynomial P ∈ PolyD(R2) gives us ∼ D2 parameters to
play with, because Dim PolyD(R2) ∼ D2. Equidistribution involves D2 conditions. It turns out
that we can always choose P to guarantee (EquiL) and (EquiP) (cf. [G]). Therefore, inequality (∗)
holds (for all D ≥ 1), and this implies the Szemerédi-Trotter theorem.

We will come back to polynomial partitioning next lecture and discuss it in more detail.

2.5. Higher dimensions. To end this lecture, I want to give a quick discussion of the impact of
the polynomial method on incidence geometry. The main impact has to do with higher dimensions.
Instead of lines in R2, it is natural to try to study k-planes in Rn.

The cutting method has had some success in higher dimensions, but it also ran into a fundamental
barrier. Working in Rn, we can choose D red hyperplanes that cut space into ∼ Dn cells. A line
can enter at most ∼ D of these cells, and a k-plane can enter at most ∼ Dk of these cells. If we
have equidistribution, then we can get interesting bounds. When k = n − 1, then we can let the
D red hyperplanes be a random subset of our set of k-planes, and this leads to interesting bounds.
One of the big successes of the cutting method is that it works for hyperplanes in any dimension.

But if k < n− 1, then there is no way to choose D red hyperplanes that gets close to equidistri-
bution. The situation is similar to trying to equidistribute points in the plane, which we discussed



8 INTRODUCTION TO THE POLYNOMIAL METHOD AND INCIDENCE GEOMETRY

above. When k < n − 1, cutting with hyperplanes doesn’t work well, and this was an important
roadblock in the field for about twenty years.

The simplest case where k < n − 1 is k = 1, n = 3: lines in R3. This brings us back to the
joints problem. The joints problem was one of the simplest open problems about the intersection
patterns of lines in R3. It was a good test problem for exploring the regime where the codimension
is bigger than 1. (We can try cutting R3 into cells using D red planes. If we could equidistribute
the lines, the cutting method would imply that the number of joints is . L3/2, the same bound as
in Theorem 1. But in general, there is no way to choose D red planes to equidistribute a set of
lines.)

The polynomial method has led to a lot of progress in the regime k < n− 1. The joints theorem
is one good example. Also, the polynomial partitioning method works for all k and n. It doesn’t
solve all problems, but it has led to significant progress for all k and n, with particularly strong
results about lines in R3. In the next lecture, we will talk more about polynomial cutting for lines
in R3 as well as talking about some of the big open problems in incidence geometry.
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