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Today, we’re continuing our discussion of Sobolev inequalities from last lecture. Recall that last
time, we proved the following theorem:

Theorem 1. If u ∈ C1
c (Rn), then

‖u‖
L

n
n−1
≤ ‖∇u‖L1 .

The idea of this proof was that we wrote

ˆ
|u|

n
n−1 dx1 · · · dxn ≤

ˆ
u

1
n−1

1 · · ·u
1

n−1
n dx1 · · · dxn

where ui =
´
|∂iu(x1, . . . , xn)| dxi and used the Holder inequality and Fubini’s theorem a lot of

times. Even though this started out seeming a bit daunting, we realized that it wasn’t that bad
because there were a lot of paths through this mess of Holder/Fubini that led us to the right
outcome. Related to what we did is the following theorem.

Theorem 2 (Gen. Loomis-Whitney). If uj : Rn → R is a function of x1, . . . , x̂i, . . . , xn where
uj ≥ 0, then ˆ n∏

j=1

u
1

n−1

j ≤
n∏
j=1

(ˆ
uj

) 1
n−1

.

As a sharp example of this theorem, consider

uj =
∏
i 6=j

wi(xi),

where wi only depends on xi and wi ≥ 0. Now, the left hand side of gen. Loomis-Whitney gives us

ˆ n∏
j=1

u
1

n−1

j =

ˆ n∏
j=1

wj(xj) =
n∏
j=1

ˆ
wj

and the right hand side gives us

n∏
j=1

(ˆ
uj

) 1
n−1

=
n∏
j=1

∏
i 6=j

(ˆ
wi

) 1
n−1

=
∏
j=1

ˆ
wj .
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We can use this sharp example as guidance when we’re trying to figure out how to use Holder to
give us our Sobolev bounds. For example, let us consider the n = 4 case of the above Sobolev
inequality. We want to know if splitting upˆ (ˆ

u
1/3
1 u

1/3
2 · u1/33 u

1/3
4 dx1 dx2

)
dx3 dx4

is a good idea. So let us plug in the ui from our sharp example to getˆ (ˆ
w

1/3
2 w

1/3
1 · (w1w2)

1/3(w1w2)
1/3 dx1 dx2

)
w?
3w

?
4 dx3 dx4,

where the question marks are some constants. And if we let g = w1w2,

ˆ
g1/3g2/3 ≤

(ˆ
g

)1/3(ˆ
g

)2/3

by Holder’s inequality, where we chose the exponents to make this example work out. The idea
now is that if at every step of our Holder/Fubini process, we choose exponenets to respect this
example, we will probably be fine.

Question: What if we look at ‖∇u‖Lq instead of ‖∇u‖L1 and ask for a similar Sobolev inequality
as before?

Recall that we had this issue with scaling. That is, if a Sobolev inequality held, then the exponents
should hold up to scaling. Let η ∈ C∞c and ηλ(x) = η(x/λ). Then,

‖ηλ‖Lp(Rn) = λs0(p,n)‖η‖Lp(Rn) and ‖∇ηλ‖Lq(R) = λs1(q,n)‖∇η‖Lq ,

so we should have s0(p, n) = s1(q, n). If we solve for these constants, we have

s0(p, n) = n/p, and s1(q, n) = −1 + n/q.

Theorem 3. If n
n−1 ≤ p <∞ and the apropriate scaling holds, u ∈ C1

c (Rn), then

‖u‖Lp ≤ C(p, n)‖∇‖Lq .

Proof. The idea here will be to convert this statement into one that we already know is true (the
Sobolev inequality from last class). Let p = β · n

n−1 . Since β ≥ 1, |u|β is C1
c . Now, we have that(ˆ

|u|p
)n−1

n

=
∥∥∥|u|β∥∥∥

L
n
n−1

≤ ‖∇(|u|β)‖L1 [by original Sobolev]

≤ β
ˆ
|u|β−1 · |∇u|

≤ β
(ˆ
|u|p
)a(ˆ

|∇u|q
)1/q

.
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So we have that (ˆ
|u|p
)n−1

n
−a
≤ β

(ˆ
|∇u|q

)1/q

.

By scaling, we know that n−1
n − a must equal 1/p and q must be the number that makes scaling

hold.

The only case when no Sobolev inequality holds but the scaling equality holds is the p = ∞ case.
Here, p = ∞ and q = n. Let us give a sketch of an example that shows why ‖u‖L∞ . ‖∇u‖Ln
cannot hold.

Consider u radially symmetrical and u(r)→ 0 as r →∞. Now, we have that

‖u‖L∞ = u(0) =

ˆ ∞
0
|u′(r)| dr (1)

and

‖∇u‖L1 =

ˆ ∞
0
|u′(r)|n · rn−1 dr. (2)

Our first try at a counterexample might be to take u such that |u′(r)| = 1/r. But this doesn’t quite
work since (1) =∞, but (2) =∞ also. But no worries. We can take something that grows slightly
slower. Let us take u so that |u′(r)| = 1

r| log r| for 0 ≤ r ≤ 1/e. Then, we have that

(1) =

ˆ 1/e

0

1

r| log r|
dr =

ˆ ∞
1

1

s
ds =∞

and

(2) =

ˆ 1/e

0

1

r| log r|n
dr =

ˆ ∞
1

1

sn
ds <∞.

By taking compact cutoffs of this u, we can get that an inequality like ‖u‖L∞ . ‖∇u‖Ln cannot
hold.

There is another kind of scaling that we could consider, and that is Cα scaling. We have then that

[ηλ]Cα = λSH(α)[η]Cα

and we may wonder whether there is a Sobolev inequality with Cα norms.

Theorem 4. If s1(q, n) = sH(α), 0 < α ≤ 1, then for all u ∈ C1(Rn),

[u]Cα ≤ C(α, n)‖∇u‖Lq .
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In the case when n = 1, this problem isn’t too hard (and may have been why Holder developed the
Holder inequality!). We have that

|u(x)− u(y)| ≤
ˆ y

x
|∇u(s)| · 1 ds

≤
(ˆ
|∇u|q

)1/q

(|x− y|)
q−1
q ,

so we get that
[u]

C
q−1
q
≤ ‖∇u‖Lq .

The general case is a bit harder, and we’ll get to it via the following lemma.

Lemma 5. ∣∣∣∣∣u(x)−
 
Sx(R)

u

∣∣∣∣∣ . ‖∇u‖Lq ·Rα.
Proof.

LHS ≤
 
Sn−1

|u(x)− u(x+Rθ)| dθ

≤
 
Sn−1

ˆ R

0
|∇u(x+ rθ)| dr dθ

.
ˆ
Bx(R)

|∇u| · r−(n−1) dv

≤
(ˆ
|∇u|q

)1/q (ˆ
BR

r
−(n−1) q

q−1

) q−1
q

= ‖∇u‖Lq ·Rα.

But this isn’t quite good enough to get the bounds we want. Let us try to perturb it a little bit
and show that not much changes. Let a be the midpoint of x and y, and suppose that |x− y| = R.
Then, we claim that ∣∣∣∣∣u(x)−

 
Sa(R)

u

∣∣∣∣∣ . ‖∇u‖Lq ·Rα.
In other words, moving x to a doesn’t change much. To see this, we notice that∣∣∣∣∣u(x)−

 
Sa(R)

u

∣∣∣∣∣ ≤
 
Sa(R)

|u(x)− u(a+Rθ)| dθ

≤
 
Sn−1

(ˆ 2R

0
|∇u(x+ rϕ)| dr

) ∣∣∣∣det
dθ

dϕ

∣∣∣∣ dϕ.
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But | dθdϕ | . 1 from the compactness of the sphere, so we have |det dθ
dϕ | . 1 and the bounds we want

hold.

So ∣∣∣∣∣u(x)−
 
Sa(R)

u

∣∣∣∣∣ . ‖∇u‖Lq ·Rα
and as a result,

|u(x)− u(y)| . ‖∇u‖Lq ·Rα,

so [u]Cα . ‖∇u‖Lq .
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