Lecture Notes for LG's Diff. Analysis

trans. Paul Gallagher

Feb. 23, 2015

1 The Sobolev Inequality

Suppose that $u \in C_c^1(\mathbb{R}^n)$. Clearly, if $\nabla u = 0$, then u = 0. So, we can ask if ∇u is "small", does this imply that u is small?

Question 1. If $u \in C_c^1(\mathbb{R}^n)$ and $\int |\nabla u| = 1$, is there a bound for $\sup |u|$?

Answer 1. If n = 1, then this is true by the Fundamental theorem of calculus.

If n > 1, then we have the following scaling example: Let $\eta \in C_c^1$ be a fixed smooth bump function. Define $\eta_{\lambda}(x) = \eta(x/\lambda)$. Then $\sup(\eta_{\lambda}) = \sup(\eta)$, and

$$\int |\nabla \eta_{\lambda}| dx = \lambda^{-1} \int |(\nabla \eta)(x/\lambda)| dx = \lambda^{n-1} \int |\nabla \eta| = \lambda^{n-1}$$

Therefore, we can make the L^1 norm of the derivative as small as we like, while keeping the L^{∞} norm of the function large.

Theorem 1.1 (Sobolev Inequality). If $u \in C_c^1(\mathbb{R}^n)$ then $||u||_{L^{\frac{n}{n-1}}} \leq ||\nabla u||_{L^1}$.

Remark 1.1. Note that this will not hold true for $p \neq \frac{n}{n-1}$. To see this, suppose that we have $||u||_{L^p} \leq ||\nabla u||_{L^1}$. As in the scaling example, pick η a smooth bump function, and define η_{λ} as before. Then

$$\int |\eta_{\lambda}|^{p} = \lambda^{n} \int \eta^{p} dx \le \lambda^{n} \left(\int |\nabla \eta| dx \right)^{p}$$

$$= \lambda^{n} \left(\lambda^{-n} \int |(\nabla \eta)(x/\lambda)| dx \right)^{p}$$

$$= \lambda^{n} \left(\lambda^{-n+1} \int |\nabla \eta_{\lambda}| dx \right)^{p}$$

$$= \lambda^{n+(1-n)p} \left(\int |\nabla \eta_{\lambda}| dx \right)^{p}$$

Thus, if $p \neq n/(n-1)$, we can make the right hand side very small simply by making λ either large or small.

Before we prove the Sobolev Inequality, we'll prove a slightly easier problem:

Lemma 1.1. Let $u \in C_c^1(\mathbb{R}^n)$, $U = \{|u| > 1\}$ and $\pi_j : \mathbb{R}^n \to x_j^{\perp}$. Then $Vol_{n-1}(\pi_j(U)) \leq \int |\nabla u|$.

Proof. WLOG, assume j = n. Then

$$Vol(\pi_{j}(U)) \leq \int_{\mathbb{R}^{n-1}} \max_{x_{n}} |u(x_{1}, \cdots, x_{n})| dx_{1} \cdots dx_{n-1}$$

$$\leq \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} |\partial_{n} u(x_{1}, \cdots, x_{n})| dx_{n} dx_{1} \cdots dx_{n-1}$$

$$\leq \int_{\mathbb{R}^{n}} |\nabla u|$$

Then we can use the Loomis-Whitney theorem which we proved in the homework:

Theorem 1.2 (Loomis-Whitney). If $U \subset \mathbb{R}^n$ is open, and $|\pi_j(U)| \leq A$ for all j, then $|U| \leq A^{n/(n-1)}$.

Proof of Sobolev dimension 2. Define

$$u_1(x_2) = \int |\partial_1 u(x_1, x_2)| dx_1$$
$$u_2(x_1) = \int |\partial_2 u(x_1, x_2)| dx_2$$

Then $|u(x_1, x_2)| \leq u_i(x_j)$. Therefore,

$$\int u^2 \le \int u_1(x_2)u_2(x_1)dx_1dx_2 = \left(\int u_1dx_2\right)\left(\int u_2dx_1\right) \le \left(\int |\nabla u|\right)^2$$

With this in hand, we can move on to the proof of the Sobolev by induction.

Proof of General Sobolev. Define

$$u_n(x_1, \cdots, x_{n-1}) = \int |\partial_n u(x_1, \cdots, x_n)| dx_n$$

Then $|u| \leq u_n$ and $\int_{\mathbb{R}^{n-1}} u_n \leq \int_{\mathbb{R}^n} |\nabla u|$.

We will proceed by induction.

$$\int_{\mathbb{R}^{n}} |u|^{n/(n-1)} \leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{n-1}} |u| u_{n}^{1/(n-1)} dx_{1} \cdots dx_{n-1} \right) dx_{n}
\leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}^{n-1}} |u|^{\frac{n-1}{n-2}} \right]^{\frac{n-2}{n-1}} \left[\int_{\mathbb{R}^{n-1}} |u_{n}| \right]^{1/(n-1)} dx_{n}
\leq \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |\nabla u| dx_{1} \cdots dx_{n-1} dx_{n} \left(\int_{\mathbb{R}^{n-1}} u_{n} \right)^{1/(n-1)}
\leq \left(\int |\nabla u| \right)^{n/(n-1)}$$