
Lecture Notes for LG’s Diff. Analysis

trans. Paul Gallagher

Feb. 23, 2015

1 The Sobolev Inequality

Suppose that u ∈ C1
c (Rn). Clearly, if ∇u = 0, then u = 0. So, we can ask if

∇u is “small”, does this imply that u is small?

Question 1. If u ∈ C1
c (Rn) and

∫
|∇u| = 1, is there a bound for sup |u|?

Answer 1. If n = 1, then this is true by the Fundamental theorem of
calculus.

If n > 1, then we have the following scaling example: Let η ∈ C1
c be a fixed

smooth bump function. Define ηλ(x) = η(x/λ). Then sup(ηλ) = sup(η), and∫
|∇ηλ|dx = λ−1

∫
|(∇η)(x/λ)|dx = λn−1

∫
|∇η| = λn−1

Therefore, we can make the L1 norm of the derivative as small as we like,
while keeping the L∞ norm of the function large.

Theorem 1.1 (Sobolev Inequality). If u ∈ C1
c (Rn) then ∥u∥

L
n

n−1
≤ ∥∇u∥L1 .

Remark 1.1. Note that this will not hold true for p ̸= n
n−1

. To see this,
suppose that we have ∥u∥Lp ≤ ∥∇u∥L1 . As in the scaling example, pick η a
smooth bump function, and define ηλ as before. Then
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∫
|ηλ|p = λn

∫
ηpdx ≤ λn

(∫
|∇η|dx

)p

= λn

(
λ−n

∫
|(∇η)(x/λ)|dx

)p

= λn

(
λ−n+1

∫
|∇ηλ|dx

)p

= λn+(1−n)p

(∫
|∇ηλ|dx

)p

Thus, if p ̸= n/(n−1), we can make the right hand side very small simply
by making λ either large or small.

Before we prove the Sobolev Inequality, we’ll prove a slightly easier prob-
lem:

Lemma 1.1. Let u ∈ C1
c (Rn), U = {|u| > 1} and πj : Rn → x⊥

j . Then
V oln−1(πj(U)) ≤

∫
|∇u|.

Proof. WLOG, assume j = n. Then

V ol(πj(U)) ≤
∫
Rn−1

max
xn

|u(x1, · · · , xn)|dx1 · · · dxn−1

≤
∫
Rn−1

∫
R
|∂nu(x1, · · · , xn)|dxndx1 · · · dxn−1

≤
∫
Rn

|∇u|

Then we can use the Loomis-Whitney theorem which we proved in the
homework:

Theorem 1.2 (Loomis-Whitney). If U ⊂ Rn is open, and |πj(U)| ≤ A for
all j, then |U | ≤ An/(n−1).
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Proof of Sobolev dimension 2. Define

u1(x2) =

∫
|∂1u(x1, x2)|dx1

u2(x1) =

∫
|∂2u(x1, x2)|dx2

Then |u(x1, x2)| ≤ ui(xj). Therefore,

∫
u2 ≤

∫
u1(x2)u2(x1)dx1dx2 =

(∫
u1dx2

)(∫
u2dx1

)
≤

(∫
|∇u|

)2

With this in hand, we can move on to the proof of the Sobolev by induc-
tion.

Proof of General Sobolev. Define

un(x1, · · · , xn−1) =

∫
|∂nu(x1, · · · , xn)|dxn

Then |u| ≤ un. and
∫
Rn−1 un ≤

∫
Rn |∇u|.

We will proceed by induction.

∫
Rn

|u|n/(n−1) ≤
∫
R

(∫
Rn−1

|u|u1/(n−1)
n dx1 · · · dxn−1

)
dxn

≤
∫
R

[∫
Rn−1

|u|
n−1
n−2

]n−2
n−1

[∫
Rn−1

|un|
]1/(n−1)

dxn

≤
∫
R

∫
Rn−1

|∇u|dx1 · · · dxn−1dxn

(∫
Rn−1

un

)1/(n−1)

≤
(∫

|∇u|
)n/(n−1)
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