18.156 Lecture Notes

Febrary 17, 2015

trans. Jane Wang

The main goal of this lecture is to prove Korn's inequality, which as we recall is as follows:

Theorem 1 (Korn's Inequality). If $u \in C^2_{comp}(\mathbb{R}^n)$, and $\Delta u = f$, then

$$[\partial_i \partial_j u]_{C^{\alpha}} \le C(n, \alpha) [\Delta u]_{C^{\alpha}}$$

First, let us recall the progress that we made last time. To start, we have the following proposition allowing us to find the second partials of u.

Proposition 2. If $u \in C^4_{comp}(\mathbb{R}^n)$, $\Delta u = f$, then

$$\partial_i \partial_j u(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} f(y) \partial_i \partial_j \Gamma(x-y) \, dy + \frac{1}{n} \delta_{ij} f(x).$$

Since this is a bit unweildy, let us define some notation:

$$T_{\epsilon}f(x) = f * K_{\epsilon}(x)$$

$$K_{\epsilon}(x) = \chi_{|x| > \epsilon} \partial_i \partial_j \Gamma(x)$$

$$K(x) = K_0(x) = \partial_i \partial_i \Gamma(x)$$

To prove Korn's inequality, we will start by proving the following theorem.

Theorem 3. If $f \in C^{\alpha}_{comp}(\mathbb{R}^n)$, then $[T_{\epsilon}f]_{\alpha} \leq C(\alpha, n)[f]_{C^{\alpha}}$.

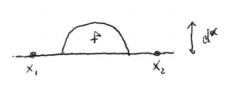
Without loss of generality, we can assume that $[f]_{C^{\alpha}} = 1$ and $|x_1 - x_2| = d$. Then, to prove this theorem, we want to show that

$$|T_{\epsilon}f(x_1) - T_{\epsilon}f(x_2)| \le C(\alpha, n)d^{\alpha}.$$

The idea of this proof will to break up $|T_{\epsilon}f(x_1) - T_{\epsilon}f(x_2)|$ into pieces that look like behaviors that we can understand.

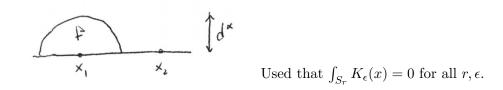
Recall that last class, we examined a few examples.

1. f supported between x_1 and x_2 .

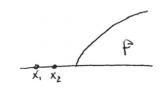


Used that $|K(x)| \lesssim |x|^{-n}$.

2. f supported over x_1 .



3. f supported on $B_{3d}(x_1)$, and $\epsilon < d$. Note that as opposed to the previous examples, $|T_{\epsilon}f(x_1)|$ can be $\gg d^{\alpha}$.



For this case, we will use the following lemma.

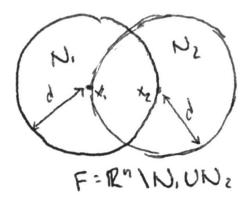
Lemma 4. If $|a| \leq \frac{1}{2}|b|$, then $|K(b) - K(b+a)| \leq |a| \cdot |b|^{-n-1}$.

With this, we have that

$$\begin{aligned} |T_{\epsilon}f(x_{1}) - T_{\epsilon}f(x_{2})| &= \left| \int f(y)(K(x_{1} - y) - K(x_{2} - y)) \, dy \right| \\ &\leq \int |f(y)| d \cdot |x_{1} - y|^{-n-1} \, dy \\ &\leq d \int_{|x_{1} - y| > d} |x_{1} - y|^{\alpha} |x_{1} - y|^{-n-1} \, dy \\ &\lesssim d^{\alpha}. \end{aligned}$$

With these examples in mind, we can now begin a proof of Theorem 3.

Proof of Theorem 3. Let us consider the main case when $\epsilon < d/10$. The picture that we should have in mind is the following.



Now we have that

$$\begin{aligned} |T_{\epsilon}f(x_{1}) - T_{\epsilon}f(x_{2})| &= \left| \int f(y)K_{\epsilon}(x_{1} - y) \, dy - \int f(y)K_{\epsilon}(x_{2} - y) \, dy \right| \\ &= \left| \int_{N_{1}} (f(y) - A)K_{\epsilon}(x_{1} - y) \, dy - \int_{N_{2}} (f(y) - B)K_{\epsilon}(x_{2} - y) \, dy \right| \\ &+ \int_{N_{1}^{c}} (f(y) - C)K_{\epsilon}(x_{1} - y) \, dy - \int_{N_{2}^{c}} (f(y) - D)K_{\epsilon}(x_{2} - y) \, dy \right| \end{aligned}$$

Let us denote the four integrands in the last expression in order by I_1, I_2, I_3, I_4 . Here, the A, B, C, D may be any constants since $\int_{S_r} K_{\epsilon}(x) = 0$. Let us let

$$A = f(x_1), B = f(x_2), C = D = f(a)$$
 where $a = \frac{x_1 + x_2}{2}$

This way, we can leverage that $[f]_{C^{\alpha}}$ in our bounds. Splitting up this expression further, we have that

$$|T_{\epsilon}f(x_1) - T_{\epsilon}f(x_2)| \le \Big| \int_{N_1} I_1 \Big| + \Big| \int_{N_2} I_2 \Big| + \Big| \int_F I_3 - I_4 \Big| + \Big| \int_{N_1 \setminus N_2} I_4 \Big| + \Big| \int_{N_2 \setminus N_1} I_3 \Big|.$$

The first two terms will behave like example 2 and the last two terms will behave like example 1. The third term will behave like example 3 and is the most interesting, so let us work through that bound.

$$\begin{split} \left| \int_{F} I_{3} - I_{4} \right| &= \left| \int_{F} (f(y) - f(a)) (K_{\epsilon}(x_{1} - y) - K_{\epsilon}(x_{2} - y)) \, dy \right| \\ &\leq \left| \int_{F} |f(y) - f(a)| \cdot d \cdot |x_{1} - y|^{-n-1} \, dy \right| \\ &\leq \int_{B_{d/2}(a)^{c}} |a - y|^{\alpha} \cdot d \cdot |a - y|^{-n-1} \, dy \\ &\lesssim d^{\alpha}. \end{split}$$

Remark. Here we used that $\epsilon < d/10$ since the bound in the second line came from a bound on ∂K_{ϵ} , but K_{ϵ} is discontinuous. However, the $\epsilon < d/10$ means that in F we avoid this discontinuity. We also note that we didn't need to choose a to be the midpoint of x_1 and x_2 . We just needed something like $|x_1 - y| \sim |a - y| \sim |x_2 - y|$ on F.

The following proposition then almost gives us Korn's inequality, except for an assumption about how many derivatives u has.

Proposition 5. If $u \in C^4_{comp}(\mathbb{R}^n)$, $\Delta u = f$, then $[\partial_i \partial_j u]_{C^{\alpha}} \lesssim [\Delta u]_{C^{\alpha}}$.

Proof. Recall that for any $x_1 \neq x_2$,

$$|\partial_i \partial_j u(x_1) - \partial_i \partial_j u(x_2)| = \lim_{\epsilon \to 0^+} |T_{\epsilon} f(x_1) - T_{\epsilon} f(x_2)| + \frac{1}{n} \delta_{ij} |f(x_1) - f(x_2)|.$$

Eventually, $\epsilon < |x_1 - x_2|/10$ and we can apply theorem 3 to the first term. The second term is bounded by $[f]_{C^{\alpha}} \cdot |x_1 - x_2|^{\alpha}$.

To prove Korn's inequality, we use the **mollifier trick** to show that we only need that u has two derivatives.

Proof of Korn's inequality. Let $varphi \in C_c^{\infty}(\mathbb{R}^n)$ be a bump function such that $\varphi \ge 0$, $\int \varphi = 1$, and define

$$\varphi_{\epsilon}(x) = \epsilon^{-n} \varphi(x/\epsilon), \ u_{\epsilon} = u * \varphi_{\epsilon}.$$

We have that $[\partial_i \partial_j u_{\epsilon}]_{C^{\alpha}} \lesssim [\Delta u_{\epsilon}]_{C^{\alpha}}$, and ince $u \in C_c^2$ and $u_{\epsilon} \in C_c^{\infty}$, we have that $u_{\epsilon} \to u$ in C^2 . Now,

$$|partial_i\partial_j u(x_1) - \partial_i\partial_j u(x_2)| = \left| \int (\Delta u(x_1 - y) - \Delta u(x_2 - y))\varphi_{\epsilon}(y) \, dy \right|$$

$$\lesssim \liminf_{\epsilon \to 0} [\Delta u_{\epsilon}]_{C^{\alpha}}.$$

Note that this isn't quite good enough, since we could have something like the following dangerous picture:

But in fact, this doesn't happen. Since $\Delta u_{\epsilon} = \varphi_{\epsilon} * \Delta u$, we have that

$$\begin{aligned} |\Delta u_{\epsilon}(x_{1}) - \Delta u_{\epsilon}(x_{2})| &= \left| \int (\Delta u(x_{1} - y) - \Delta u(x_{2} - y))\varphi_{\epsilon}(y) \, dy \right| \\ &\leq [\Delta u]_{C^{\alpha}} |x_{1} - x_{2}|^{\alpha} \int \varphi_{\epsilon}(y) \, dy. \end{aligned}$$

Our next goal will be to prove the Schauder Inequality. Recall that Korn's inequality and the first homework allowed us to prove the following lemma.

Lemma 6. If $|a_{ij}(x) - \delta_{ij}| < \epsilon(\alpha, n)$ for all i, j, x, and $[a_{ij}]_{C^{\alpha}} \leq B$ on $B_1 \subset \mathbb{R}^n$, where

$$Lu = \sum a_{ij}\partial_i\partial_j u = 0 \text{ on } B_1 (u \in C^2(B_1)),$$

then $||u||_{C^{2,\alpha}}(B_{1/2}) \le C(\alpha, n, B)||u||_{C^{2}(B_{1})}.$

As a step toward proving Schauder's inequality, let us change one of the conditions in this lemma.

Proposition 7 (Baby Schauder). If $0 < \lambda \leq a_{ij} \leq \Lambda$, $[a_{ij}]_{C^{\alpha}(B_1)} \leq B$, Lu = 0 on B_1 , then

$$||u||_{C^{2,\alpha}(B_{1/2})} \le C(\alpha, n, B, \lambda, \Lambda) ||u||_{C^{2}(B_{1})}.$$

Proof. First, we want to be able to replace $\delta_{ij} \leftrightarrow A_{ij}$, where $0 < \lambda \leq A_{ij} \leq \Delta$. We can do this with a change of coordinates so that $B_{1/2} \subset B_1$ becomes $E \subset 2E$, where E is an ellispe of bounded eccentricity.

Now, choose $r(\epsilon(n, \alpha), B)$ such that for $x \in B(x_0, r)$, $|a_{ij}(x_0) - a_{ij}(x)| < \epsilon(\alpha, n)$, and cover $B_{1/2}$ with such balls $B(x_i, r(i))$. Then,

$$\|u\|_{C^{2,\alpha}(B_{1/2})} \lesssim \max_{i} \|u\|_{C^{2,\alpha}(B(x_{i},r(i)))} \lesssim \max_{i} \|u\|_{C^{2}(B(x_{i},r))} \le \|u\|_{C^{2}(B_{1})}.$$