18.156 Lecture Notes

Febrary 17, 2015

trans. Jane Wang

The main goal of this lecture is to prove Korn's inequality, which as we recall is as follows:
Theorem 1 (Korn's Inequality). If $u \in C_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)$, and $\Delta u=f$, then

$$
\left[\partial_{i} \partial_{j} u\right]_{C^{\alpha}} \leq C(n, \alpha)[\Delta u]_{C^{\alpha}} .
$$

First, let us recall the progress that we made last time. To start, we have the following proposition allowing us to find the second partials of u.

Proposition 2. If $u \in C_{\text {comp }}^{4}\left(\mathbb{R}^{n}\right), \Delta u=f$, then

$$
\partial_{i} \partial_{j} u(x)=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} f(y) \partial_{i} \partial_{j} \Gamma(x-y) d y+\frac{1}{n} \delta_{i j} f(x)
$$

Since this is a bit unweildy, let us define some notation:

$$
\begin{aligned}
& T_{\epsilon} f(x)=f * K_{\epsilon}(x) \\
& K_{\epsilon}(x)=\chi_{|x|>\epsilon} \partial_{i} \partial_{j} \Gamma(x) \\
& K(x)=K_{0}(x)=\partial_{i} \partial_{j} \Gamma(x) .
\end{aligned}
$$

To prove Korn's inequality, we will start by proving the following theorem.
Theorem 3. If $f \in C_{\text {comp }}^{\alpha}\left(\mathbb{R}^{n}\right)$, then $\left[T_{\epsilon} f\right]_{\alpha} \leq C(\alpha, n)[f]_{C^{\alpha}}$.

Without loss of generality, we can assume that $[f]_{C^{\alpha}}=1$ and $\left|x_{1}-x_{2}\right|=d$. Then, to prove this theorem, we want to show that

$$
\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right| \leq C(\alpha, n) d^{\alpha} .
$$

The idea of this proof will to break up $\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right|$ into pieces that look like behaviors that we can understand.

Recall that last class, we examined a few examples.

1. f supported between x_{1} and x_{2}.

$$
\text { Used that }|K(x)| \lesssim|x|^{-n} \text {. }
$$

2. f supported over x_{1}.

Used that $\int_{S_{r}} K_{\epsilon}(x)=0$ for all r, ϵ.
3. f supported on $B_{3 d}\left(x_{1}\right)$, and $\epsilon<d$. Note that as opposed to the previous examples, $\left|T_{\epsilon} f\left(x_{1}\right)\right|$ can be $\gg d^{\alpha}$.

For this case, we will use the following lemma.
Lemma 4. If $|a| \leq \frac{1}{2}|b|$, then $|K(b)-K(b+a)| \leq|a| \cdot|b|^{-n-1}$.
With this, we have that

$$
\begin{aligned}
\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right| & =\left|\int f(y)\left(K\left(x_{1}-y\right)-K\left(x_{2}-y\right)\right) d y\right| \\
& \leq \int|f(y)| d \cdot\left|x_{1}-y\right|^{-n-1} d y \\
& \leq d \int_{\left|x_{1}-y\right|>d}\left|x_{1}-y\right|^{\alpha}\left|x_{1}-y\right|^{-n-1} d y \\
& \lesssim d^{\alpha} .
\end{aligned}
$$

With these examples in mind, we can now begin a proof of Theorem 3.

Proof of Theorem 3. Let us consider the main case when $\epsilon<d / 10$. The picture that we should have in mind is the following.

Now we have that

$$
\begin{aligned}
\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right|= & \left|\int f(y) K_{\epsilon}\left(x_{1}-y\right) d y-\int f(y) K_{\epsilon}\left(x_{2}-y\right) d y\right| \\
= & \mid \int_{N_{1}}(f(y)-A) K_{\epsilon}\left(x_{1}-y\right) d y-\int_{N_{2}}(f(y)-B) K_{\epsilon}\left(x_{2}-y\right) d y \\
& \quad+\int_{N_{1}^{c}}(f(y)-C) K_{\epsilon}\left(x_{1}-y\right) d y-\int_{N_{2}^{c}}(f(y)-D) K_{\epsilon}\left(x_{2}-y\right) d y \mid
\end{aligned}
$$

Let us denote the four integrands in the last expression in order by $I_{1}, I_{2}, I_{3}, I_{4}$. Here, the A, B, C, D may be any constants since $\int_{S_{r}} K_{\epsilon}(x)=0$. Let us let

$$
A=f\left(x_{1}\right), B=f\left(x_{2}\right), C=D=f(a) \text { where } a=\frac{x_{1}+x_{2}}{2}
$$

This way, we can leverage that $[f]_{C^{\alpha}}$ in our bounds. Splitting up this expression further, we have that

$$
\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right| \leq\left|\int_{N_{1}} I_{1}\right|+\left|\int_{N_{2}} I_{2}\right|+\left|\int_{F} I_{3}-I_{4}\right|+\left|\int_{N_{1} \backslash N_{2}} I_{4}\right|+\left|\int_{N_{2} \backslash N_{1}} I_{3}\right| .
$$

The first two terms will behave like example 2 and the last two terms will behave like example 1 . The third term will behave like example 3 and is the most interesting, so let us work through that bound.

$$
\begin{aligned}
\left|\int_{F} I_{3}-I_{4}\right| & =\left|\int_{F}(f(y)-f(a))\left(K_{\epsilon}\left(x_{1}-y\right)-K_{\epsilon}\left(x_{2}-y\right)\right) d y\right| \\
& \leq\left|\int_{F}\right| f(y)-f(a)|\cdot d \cdot| x_{1}-\left.y\right|^{-n-1} d y \\
& \leq \int_{B_{d / 2}(a)^{c}}|a-y|^{\alpha} \cdot d \cdot|a-y|^{-n-1} d y \\
& \lesssim d^{\alpha} .
\end{aligned}
$$

Remark. Here we used that $\epsilon<d / 10$ since the bound in the second line came from a bound on ∂K_{ϵ}, but K_{ϵ} is discontinuous. However, the $\epsilon<d / 10$ means that in F we avoid this discontinuity. We also note that we didn't need to choose a to be the midpoint of x_{1} and x_{2}. We just needed something like $\left|x_{1}-y\right| \sim|a-y| \sim\left|x_{2}-y\right|$ on F.

The following proposition then almost gives us Korn's inequality, except for an assumption about how many derivatives u has.

Proposition 5. If $u \in C_{\text {comp }}^{4}\left(\mathbb{R}^{n}\right), \Delta u=f$, then $\left[\partial_{i} \partial_{j} u\right]_{C^{\alpha}} \lesssim[\Delta u]_{C^{\alpha}}$.

Proof. Recall that for any $x_{1} \neq x_{2}$,

$$
\left|\partial_{i} \partial_{j} u\left(x_{1}\right)-\partial_{i} \partial_{j} u\left(x_{2}\right)\right|=\lim _{\epsilon \rightarrow 0^{+}}\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right|+\frac{1}{n} \delta_{i j}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| .
$$

Eventually, $\epsilon<\left|x_{1}-x_{2}\right| / 10$ and we can apply theorem 3 to the first term. The second term is bounded by $[f]_{C^{\alpha}} \cdot\left|x_{1}-x_{2}\right|^{\alpha}$.

To prove Korn's inequality, we use the mollifier trick to show that we only need that u has two derivatives.

Proof of Korn's inequality. Let varphi $\in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ be a bump function such that $\varphi \geq 0, \int \varphi=1$, and define

$$
\varphi_{\epsilon}(x)=\epsilon^{-n} \varphi(x / \epsilon), u_{\epsilon}=u * \varphi_{\epsilon} .
$$

We have that $\left[\partial_{i} \partial_{j} u_{\epsilon}\right]_{C^{\alpha}} \lesssim\left[\Delta u_{\epsilon}\right]_{C^{\alpha}}$, and ince $u \in C_{c}^{2}$ and $u_{\epsilon} \in C_{c}^{\infty}$, we have that $u_{\epsilon} \rightarrow u$ in C^{2}. Now,

$$
\begin{aligned}
\left|\operatorname{partial}_{i} \partial_{j} u\left(x_{1}\right)-\partial_{i} \partial_{j} u\left(x_{2}\right)\right| & =\left|\int\left(\Delta u\left(x_{1}-y\right)-\Delta u\left(x_{2}-y\right)\right) \varphi_{\epsilon}(y) d y\right| \\
& \lesssim \liminf _{\epsilon \rightarrow 0}\left[\Delta u_{\epsilon}\right]_{C^{\alpha}} .
\end{aligned}
$$

Note that this isn't quite good enough, since we could have something like the following dangerous picture:

But in fact, this doesn't happen. Since $\Delta u_{\epsilon}=\varphi_{\epsilon} * \Delta u$, we have that

$$
\begin{aligned}
\left|\Delta u_{\epsilon}\left(x_{1}\right)-\Delta u_{\epsilon}\left(x_{2}\right)\right| & =\left|\int\left(\Delta u\left(x_{1}-y\right)-\Delta u\left(x_{2}-y\right)\right) \varphi_{\epsilon}(y) d y\right| \\
& \leq[\Delta u]_{C^{\alpha}}\left|x_{1}-x_{2}\right|^{\alpha} \int \varphi_{\epsilon}(y) d y .
\end{aligned}
$$

Our next goal will be to prove the Schauder Inequality. Recall that Korn's inequality and the first homework allowed us to prove the following lemma.

Lemma 6. If $\left|a_{i j}(x)-\delta_{i j}\right|<\epsilon(\alpha, n)$ for all i, j, x, and $\left[a_{i j}\right]_{C^{\alpha}} \leq B$ on $B_{1} \subset \mathbb{R}^{n}$, where

$$
L u=\sum a_{i j} \partial_{i} \partial_{j} u=0 \text { on } B_{1}\left(u \in C^{2}\left(B_{1}\right)\right),
$$

then $\|u\|_{C^{2, \alpha}}\left(B_{1 / 2}\right) \leq C(\alpha, n, B)\|u\|_{C^{2}\left(B_{1}\right)}$.

As a step toward proving Schauder's inequality, let us change one of the conditions in this lemma.
Proposition 7 (Baby Schauder). If $0<\lambda \leq a_{i j} \leq \Lambda,\left[a_{i j}\right]_{C^{\alpha}\left(B_{1}\right)} \leq B$, Lu $=0$ on B_{1}, then

$$
\|u\|_{C^{2, \alpha}\left(B_{1 / 2}\right)} \leq C(\alpha, n, B, \lambda, \Lambda)\|u\|_{C^{2}\left(B_{1}\right)} .
$$

Proof. First, we want to be able to replace $\delta_{i j} \leftrightarrow A_{i j}$, where $0<\lambda \leq A_{i j} \leq \Delta$. We can do this with a change of coordinates so that $B_{1 / 2} \subset B_{1}$ becomes $E \subset 2 E$, where E is an ellispe of bounded eccentricity.

Now, choose $r(\epsilon(n, \alpha), B)$ such that for $x \in B\left(x_{0}, r\right),\left|a_{i j}\left(x_{0}\right)-a_{i j}(x)\right|<\epsilon(\alpha, n)$, and cover $B_{1 / 2}$ with such balls $B\left(x_{i}, r(i)\right)$. Then,

$$
\|u\|_{C^{2, \alpha}\left(B_{1 / 2}\right)} \lesssim \max _{i}\|u\|_{C^{2, \alpha}\left(B\left(x_{i}, r(i)\right)\right)} \lesssim \max _{i}\|u\|_{C^{2}\left(B\left(x_{i}, r\right)\right)} \leq\|u\|_{C^{2}\left(B_{1}\right)} .
$$

