18.156 Lecture Notes
Febrary 17, 2015

trans. Jane Wang

The main goal of this lecture is to prove Korn’s inequality, which as we recall is as follows:

Theorem 1 (Korn’s Inequality). If u € Cczomp(]R"), and Au = f, then
[aiaju]ca < C(n, a) [Au]oa.

First, let us recall the progress that we made last time. To start, we have the following proposition
allowing us to find the second partials of w.

Proposition 2. If u € C%,,,,(R"), Au = f, then

0;0;u(x) = lim f(y)0i0;T (x —y) dy + %@,f(x)

e—0 lz—y|>e

Since this is a bit unweildy, let us define some notation:

Tef(z) = f* Ke(x)
Ke($) = X|x\>eaiajr(x)
K(z) = Ko(x) = 0;0;T(z).

To prove Korn’s inequality, we will start by proving the following theorem.

Theorem 3. If f € Cg,,,(R"), then [Tc fla < C(a,n)[f]ce.

Without loss of generality, we can assume that [f]ce = 1 and |21 — z2| = d. Then, to prove this
theorem, we want to show that

|Tef(z1) — Te f(x2)| < C(a,n)d".

The idea of this proof will to break up |T¢ f(z1) — T f(z2)| into pieces that look like behaviors that
we can understand.

Recall that last class, we examined a few examples.

1. f supported between x; and xs.



Used that | K (z)] < |z|™™.

\ : Used that [¢ K(z) =0 for all r,e.

3. f supported on Bsg(z1), and € < d. Note that as opposed to the previous examples, | T, f(x1)|
can be > d“.

X X,

For this case, we will use the following lemma.

Lemma 4. If |a] < %]b\, then |K(b) — K(b+ a)| < |a| - \b\’"fl.

With this, we have that

1. 01) = o)l =| [ F) o1 )~ Ko = )y
< [1r@ld-fo -yl dy
< d/ 21 — y|¥|z —y| " dy
|z1—y|>d

< d*.

With these examples in mind, we can now begin a proof of Theorem 3.

Proof of Theorem 3. Let us consider the main case when ¢ < d/10. The picture that we should
have in mind is the following.



F"Mn\'\)nui\)l

Now we have that
T, f(n) — T f ()| = ' [k - as [ 1wk - )dy\
| [ )= DK de =y [ (G0) - B2 =) dy

N»
n /N () Ol )y~ / () = DI ) dy

Let us denote the four integrands in the last expression in order by Iy, Is, I3, I4. Here, the A, B, C, D
may be any constants since fST K (xz) =0. Let us let

1+ 2

A= f(x1), B= f(z2), C =D = f(a) where a = 5

This way, we can leverage that [f]ce in our bounds. Splitting up this expression further, we have

that
T f (1) — Tof (2)] < ‘/]Vlfl(+\/]V212\+(/ng—u]+‘/NI\N214’+’/N2\N113

The first two terms will behave like example 2 and the last two terms will behave like example 1.
The third term will behave like example 3 and is the most interesting, so let us work through that
bound.

[ 5= =| [ 00 - 5@ E e~ ) - Kooz~ )y

<| [ 1) = @)l -d-for =iy
/ la— gl d-Ja—y| " dy
Bgya(a)©
<o



Remark. Here we used that € < d/10 since the bound in the second line came from a bound on
0K, but K, is discontinuous. However, the € < d/10 means that in F' we avoid this discontinuity.
We also note that we didn’t need to choose a to be the midpoint of z1 and z5. We just needed
something like |21 — y| ~ |a — y| ~ |z2 — y| on F. O

The following proposition then almost gives us Korn’s inequality, except for an assumption about
how many derivatives u has.

Proposition 5. If u € C4,,,,(R™), Au = f, then [0;0;u]ce S [Au]ca.

Proof. Recall that for any xq # xo,
. 1
[0:0ju(@1) = Odju(wz)| = lim |Tef(x1) = Tef ()l + - 0ijlf(21) = flx2)]-

Eventually, € < |21 — z2|/10 and we can apply theorem 3 to the first term. The second term is
bounded by [f]ca - |21 — x2|*. O

To prove Korn’s inequality, we use the mollifier trick to show that we only need that u has two
derivatives.

Proof of Korn'’s inequality. Let varphi € C2°(R™) be a bump function such that ¢ > 0, [ =1,
and define
Ve(x) = € "p(x/€), Ue = U * Pe.

We have that [0;0juc]ce S [Aue)ce, and ince u € C? and u. € O, we have that u. — u in C2.
Now,

lpartial;0ju(z,) — 0;05u(xs)| = ‘ /(Au(:m —y) — Au(z2 — y))ee(y) dy

< lim inf[Aue]ce.
Nlreri}lgl[ Uelc

Note that this isn’t quite good enough, since we could have something like the following dangerous
picture:
Ay
Ll



But in fact, this doesn’t happen. Since Au. = @ * Au, we have that
[Buar) — Bua)] = | [ (Bu(er ) = Buea = ).y dy
< [Bulorfor — ol [ ey dy.

O

Our next goal will be to prove the Schauder Inequality. Recall that Korn’s inequality and the first
homework allowed us to prove the following lemma.

Lemma 6. If |a;j(x) — 0i5| < e(o,n) for all 4, j,x, and [aij]lce < B on By C R™, where
Lu = Zaij@-@ju =0 on B (u € 02(31)),

then |[ullc2.«(Byj2) < Cla,n, B)lullcz(s,)-

As a step toward proving Schauder’s inequality, let us change one of the conditions in this lemma.

Proposition 7 (Baby Schauder). If 0 < A < a;; < A, [ay]cep,) < B, Lu=0 on By, then
HUHCQ’Q(Bl/Q) < C(a’ n, B, A, A) HUHCQ(Bl)'

Proof. First, we want to be able to replace d;; <+ A;;, where 0 < A < A;; < A. We can do this

with a change of coordinates so that By/; C By becomes E' C 2E, where E is an ellispe of bounded
eccentricity.

Now, choose 7(€(n, ), B) such that for x € B(zo,7), |aij(r0) — aij(z)| < (e, n), and cover B,
with such balls B(x;,7(7)). Then,

lulleze(s, 5y S max|fullczaBaray) S maxullo2 B, < lullexs,)-



