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In the past few lectures we focused on solutions to the linear homogeneous Schrödinger equation:

∂tu = i∆u (1)

with u ∈ C2(Rd × R). If u satisfies the initial condition u(x, 0) = u0(x) (for sufficiently well-behaved u0),

the solution u is given for all times t ∈ R by

u(x, t) = eit∆u0 :=
(
eit(2πiω)2 û0

)
.̌

We have developed a variety of bounds for such solutions, which include:

(A)
∥∥eit∆u0

∥∥
L2
x

= ‖u0‖L2
x

for all t ∈ R.

(B)
∥∥eit∆u0

∥∥
L∞
x

. |t|−d/2 ‖u0‖L1
x

for all t 6= 0.

(C) Interpolation between (A) and (B).

The goal of this lecture is a proof of the following theorem via a combination of (A), (B), and (C):

Theorem 1 ((Strichartz)). If u solves (1) and u(x, 0) = u0(x),

∥∥eit∆u0

∥∥
Lσx,t

. ‖u0‖L2
x
, (2)

where σ = 2(d+2)
d .

To understand the strengths and weaknesses of the bounds we already have, let use consider a few specific

cases.

Case 1. u0 ∈ C∞c (Bd(1)) with 0 ≤ u0 ≤ 1 and u0 = 1 on Bd
(

1
2

)
.

We first note that ‖u0‖Lpx ∼ 1 for all p ∈ [1,∞]. We have shown in previous lectures that qualitiatively

eit∆u0 will spread out as t evolves forward. For t ≥ 1, |u(x, t)| ∼ t−d/2 for |x| ≤ t, and u(x, t) decays rapidly

for |x| ≥ t.
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(A) shows that
∥∥eit∆u0

∥∥
L2
x
∼ 1 for all t ∈ R, which is sharp (it must be sharp, since it’s an equality).

(B) shows that
∥∥eit∆u0

∥∥
L∞
x

.
∣∣t−d/2∣∣ for all t 6= 0. This is sharp for |t| ≥ 1, but is pretty useless when

|t| < 1.

(C) has the same effectiveness as (B).

To expand on this example, consider a slightly more general case:

Case 2. u0 ∈ C∞c (Bd(R)) with R > 0, 0 ≤ u0 ≤ 1, and u0 = 1 on Bd
(
R
2

)
.

Now (B) and (C) work well for |t| ≥ R2, but are weak for t ∈ (−R2, R2). This weakness stems from

“focusing.” Any L∞ bound on u must account for the possibility that u is focusing, so that u concentrates

in a small region with large values at some future time. We have studied such cases before; a standard

example is w0 = e−iR∆u0 with the u0 from Case 1. Then |w0| ∼ R−d/2 on Bd(R), while
∣∣eiR∆w0

∣∣ ∼ 1 on

Bd(1). In this situation (B) is sharp for t ∼ R. The focusing with
∣∣eit∆w0

∣∣ ∼ 1 only occurs over a small

time interval, say for t ∈ [−1, 1]. However, our application of (B) does not prevent focusing from happening

over an extended period of time, for instance for all t ∈ [R, 2R].

Such a “long focus” is precisely the sort of behavior disallowed by Theorem 1. The Lσ bound on space

and time may permit a focus during a small subset of times, but not over a large time interval. In fact, (B)

already controls the length of the focus in Case 2. If we suppose that eiR∆w0 is concentrated in Bd(1), we

may use eiR∆w0 as initial data in Case 1 to show that eit∆w0 will not remain focused when |t−R| & 1. In

other words, we may obtain more information about solutions to (1) by using eit∆u0 as initial data in (B)

and concluding a bound about eis∆u0 for s 6= t. The proof of Theorem 1 applies (B) to all such pairs (t, s).

We first recall the L2-unitarity of eit∆:

Lemma 2.
〈
eit∆f, g

〉
Rd =

〈
f, e−it∆g

〉
Rd .

Proof. By the definition of the L2-inner product on Rd and Plancherel’s theorem:

〈
eit∆f, g

〉
Rd =

∫
Rd
eit∆f ḡ =

∫
Rd
eit(2πiω)2 f̂ ¯̂g =

∫
Rd
f̂ e−it(2πiω)2 ĝ =

∫
Rd
f e−it∆g =

〈
f, e−it∆g

〉
Rd .

With this unitarity we may now proceed with the proof of Strichartz:

Proof (Thoremm 1). By duality,

∥∥eit∆u0

∥∥
Lσx,t

= sup
‖F‖

Lσ
′
x,t

=1

∫
Rd×R

eit∆u0F̄ ,

where σ′ is the dual exponent of σ satisfying 1
σ + 1

σ′ = 1. By Lemma 2,

sup
‖F‖

Lσ
′
x,t

=1

∫
Rd×R

eit∆u0F̄ = sup

∫
R

〈
eit∆u0, Ft

〉
dt = sup

∫
R

〈
u0, e

−it∆Ft
〉
dt = sup

〈
u0,

∫
e−it∆Ft dt

〉
.

Hence by Cauchy-Schwarz: ∥∥eit∆u0

∥∥
Lσx,t
≤ ‖u0‖L2

x
sup

∥∥∥∥∫ e−it∆Ft

∥∥∥∥
F 2
x

.
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It therefore suffices to check that

sup
‖F‖

Lσ
′
x,t

=1

∥∥∥∥∫ e−it∆Ft

∥∥∥∥
F 2
x

. 1.

We prove this separately as its own lemma:

Lemma 3. ∥∥∥∥∫ e−it∆Ft

∥∥∥∥
F 2
x

. ‖F‖Lσ′x,t .

Proof.∥∥∥∥∫ e−it∆Ft

∥∥∥∥2

L2
x

=

〈∫
R
e−it∆Ft dt,

∫
R
e−is∆Fs ds

〉
=

∫∫
R2

〈
e−it∆Ft, e

−is∆Fs
〉
dtds =

∫∫
R2

〈
Ft, e

i(t−s)∆Fs

〉
dtds.

This expression effectively measures the interaction between all pairs (t, s), as highlighted earlier. Now if

G(x, t) =

∫
R
ei(t−s)∆Fs(x) ds,

we may write∥∥∥∥∫ e−it∆Ft

∥∥∥∥2

F 2
x

=

∫∫
R2

〈
Ft, e

i(t−s)∆Fs

〉
dtds =

∫
R

〈
Ft,

∫
R
ei(t−s)∆Fs ds

〉
dt =

∫
Rd×R

FḠ.

By Hölder, ∥∥∥∥∫ e−it∆Ft

∥∥∥∥2

L2
x

≤ ‖F‖Lσ′x,t
∥∥Ḡ∥∥

Lσx,t
.

Finally, by the Duhamel bound derived in the previous lecture,
∥∥Ḡ∥∥

Lσx,t
. ‖F‖Lσ′x,t . Hence

∥∥∥∥∫ e−it∆Ft

∥∥∥∥2

L2
x

. ‖F‖2Lσ′x,t .

In fact, Lemma 3 is closely related to the inhomogeneous Schrödinger equation, and is significant enough

that it may be restated as its own theorem:

Theorem 4. If ∂tu = i∆u+ F with F ∈ C∞c (Rd × R) and u vanishes before the support of F ,

‖u(x, 0)‖L2
x
. ‖F‖Lσ′x,t .
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