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In Lecture 2 we mentioned that

∥∥∂2u
∥∥
C0 6. ‖∆u‖C0 and

∥∥∂2u
∥∥
C1 6. ‖∆u‖C1 (1)

for u ∈ C3
c (Rn). However, Korn showed that

[∂2u]α . [∆u]α

for any a ∈ (0, 1). We will spend the next few lectures proving results involving the α-Hölder norms,

culminating in a proof of the Schauder inequality. In the process we will also see why the bounds in (1) fail.

The α-Hölder norms provide an intermediate measure of smoothness between C0 and C1, and offer valuable

control on solutions to ∆u = f and ∆u = 0 with boundary conditions.

To approach Korn’s inequality, we will use an expression for ∂2u in terms of ∆u. This formula is derived

from physical potential theory. The “gravitational” field in Rn is given by

Fn(x) = cn
x

|x|n

for some constant cn > 0 and x 6= 0. As we shall see, it is most convenient to choose cn = 1
|Sn−1(1)| to

simplify divergence formulæ for Fn. In fact Fn is generated by the potential

Γn(x) =

c′n |x|
−n+2

if n ≥ 3

c′2 log |x| if n = 2

for appropriate constants c′n > 0. That is, Fn = ∇Γn. Is is easy to calculate that |∇Γn| ∼ |x|−n+1
and∣∣∇2Γn

∣∣ ∼ |x|−n for large |x|. Furthermore, divFn = 0 at x 6= 0, so ∆Γn = 0 for x 6= 0. We note in passing

that divFn = 0 may be derived without computation from the symmetry of Fn and the fact that∫
Sn−1(r)

Fn · n̂ = 1 (2)

is independent of r.
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For the remainder of the lecture, let Ω ⊂ Rn be an open bounded region with smooth boundary ∂Ω.

From divFn = 0 for x 6= 0 and (2), we may easily verify that

∫
Ω

Fn · n̂ =

1 if 0 ∈ Ω

0 if 0 6∈ Ω.
(3)

This reflects the physical (and distribution theoretic) interpretation that divFn = ∆Γn = δ0. We now verify

that convolution against Γn yields a solution to Poisson’s equation.

Proposition 1. If f ∈ C2
c (Rn) and u := Γn ∗ f , then u ∈ C2(Rn) and ∆u = f .

Proof. By definition,

u(x) =

∫
Ω

f(y)Γn(x− y) dy =

∫
Ω

Γn(y)f(x− y) dy.

These integral expressions are well-defined because f ∈ C0
c (Rn) and Γn ∈ L1

loc(Rn). Also, standard domi-

nated convergence arguments show that we may bring first derivatives under the integral sign:

∂ju =

∫
ω

f(y)∂jΓn(x− y) dy =

∫
Ω

Γ(y)∂jf(x− y) dy.

Again these expressions are well-defined because f ∈ C1
c and ∂jΓn ∈ L1

loc(Rn). Differentiating further, we

have

∂i∂ju =

∫
Ω

Γ(y)∂i∂jf(x− y) dy.

Note that we may not form a parallel expression with ∂i∂jΓn, because ∂i∂jΓn 6∈ L1
loc(Rn). By continuity, it

is sufficient to verify that ∫
Ω

∆u =

∫
Ω

f

for all regions Ω satisfying the previously stated conditions. By the divergence theorem,∫
Ω

∆u =

∫
∂Ω

∇u · n̂ =

∫
Ω

(∫
Rn

f(y)∇Γn(x− y) dy

)
· n̂ dA(x).

We use Fubini to interchange the order of integration:∫
Ω

∆u =

∫
Rn

f(y)

(∫
Ω

∇Γn(x− y) · n̂ dA(x)

)
dy.

Now (3) implies that ∫
Ω

∆u =

∫
Rn

f(y)χΩ(y) dy =

∫
Ω

f.

Having proven a solution to the equation ∆u = f , the question of uniqueness naturally arises. Could

other expressions for u also solve Laplace’s equation? We establish uniqueness in the case that u is compactly

supported:

Proposition 2. If u ∈ C4
c (Rn) and f := ∆u, then u = Γn ∗ f .
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Proof. Let w := Γn ∗ f , so ∆(u − w) = 0. The maximum principle for harmonic functions shows that

maxBR
|u− w| = max∂BR

|u− w|. Hence to verify that u = w it is sufficient to show that

lim
R→∞

max
∂BR

|u− w| = 0.

Since u is compactly supported, this is equivalent to showing that

lim
R→∞

max
∂BR

|w| = 0.

This is simple when n ≥ 3. After all, if suppu ⊂ BR0 and |x| = R ≥ 2R0, we have

|w(x)| =
∣∣∣∣∫

Rn

f(y)Γn(x− y) dy

∣∣∣∣ ≤ ‖f‖L1(Rn) sup
|z|≥R/2

|Γn(z)| → 0

as R → ∞. This estimate fails when n = 2, because Γ2 does not decay as |x| → ∞. We therefore deploy

a more careful analysis, relying on the fact that f is the Laplacian of a compactly supported function. In

particular, ∫
R2

f(y) dy =

∫
BR0

∆u(y) dy =

∫
SR0

∇u(y) · n̂ dA(y) = 0.

Hence when |x| = R ≥ 2R0,

|w(x)| =

∣∣∣∣∣
∫
BR0

f(y)Γ2(x) dy +

∫
BR0

f(y)[Γ2(x− y)− Γ2(x)] dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
BR0

f(y)[Γ2(x− y)− Γ2(x)] dy

∣∣∣∣∣
≤
∫
BR0

|f(y)| |y| max
[x,x−y]

|∇Γ2| dy

≤ R0 ‖f‖L1(R2) sup
|z|≥R/2

|∇Γ2(z)| → 0

as R→∞.

Korn’s inequality bounds the regularity of ∂2u in terms of ∆u for compactly supported functions. We

therefore wish to adapt the expressions in Proposition 1 to derive formulæ for the second partials of u.

However, as noted in the proof of Proposition 1, this goal is complicated by the fact that ∂i∂jΓn 6∈ L1
loc(Rn).

Hence we may not directly write ∂i∂ju = (∆u) ∗ ∂i∂jΓn. We might hope that the integral defining the

convolution converges conditionally, i.e. that

∂i∂ju = lim
ε→0+

∫
|x−y|>ε

f(y)∂i∂jΓn(x− y) dy (4)

for u ∈ C4
c (Rn). However, this equation is patently false if we recall that ∆Γn(z) = 0 for z 6= 0. If we use (4)

with i = j and sum over 1 ≤ i ≤ n, we find ∆u = 0, regardless of the choice of u. Hence we need to account

somehow for the effect of the singularity of Γn on derivatives of the convolution (∆u) ∗ Γn. As it turns out,
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(4) is almost correct:

Proposition 3. If f ∈ C2
c (Rn) and u := f ∗ Γn, then

∂i∂ju(x) = lim
ε→0+

∫
|x−y|>ε

f(y)∂i∂jΓn(x− y) dy +
1

n
δijf(x). (5)

Proof. As noted in the proof of Proposition 1, we may certainly write

∂i∂ju(x) = ∂i

∫
Rn

f(y)∂jΓn(x− y) dy = ∂i

∫
Rn

f(x− y)∂jΓn(y) dy =

∫
Rn

∂if(x− y)∂jΓn(y) dy.

The game of switching the convolution arguments between y and x− y is necessary because the derivatives

∂i and ∂j act on x, not y. Because ∂jΓn is locally integrable, we have

∂i∂ju(x) = lim
ε→0+

∫
|y|>ε

∂if(x− y)∂jΓn(y) dy

= lim
ε→0+

∂i

∫
|y|>ε

f(x− y)∂jΓn(y) dy

= lim
ε→0+

∂i

∫
|x−y|>ε

f(y)∂jΓn(x− y) dy.

We wish to once again move the derivative ∂i inside the integral, but the region of integration now depends

on x. Accounting for this:

∂i

∫
|x−y|>ε

f(y)∂jΓn(x− y) dy =

∫
|x−y|>ε

f(y)∂i∂jΓn(x− y) dy +

∫
|x−y|=ε

(x̂i · n̂)f(y)∂jΓn(x− y) dy.

Hence

∂i∂ju(x) = lim
ε→0+

∫
|x−y|>ε

f(y)∂i∂jΓn(x− y) dy + lim
ε→0+

∫
|x−y|=ε

(x̂i · n̂)f(y)∂jΓn(x− y) dy.

To complete the proof, we need to compute the second integral on the right hand side. As ε→ 0+, we note

that x̂i · n̂ = O(1), f(y) = f(x) +O(ε), and ∂jΓn(x− y) = O(ε−n+1). The region of integration is a sphere

of volume O(εn−1). We therefore see that we may replace f(y) by f(x) in the integral to achieve the same

limit. That is:

lim
ε→0+

∫
|x−y|=ε

(x̂i · n̂)f(y)∂jΓn(x− y) dy = f(x) lim
ε→0+

∫
|x−y|=ε

(x̂i · n̂)∂jΓn(x− y) dy

= f(x) lim
ε→0+

∫
Sn−1(ε)

cn
zizj

|z|n+1 dA(z)

=
1

n
δijf(x).
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