18.156 Lecture Notes

Lecture 3

Lecturer: Larry Guth Trans.: Cole Graham

February 11, 2015

In Lecture 2 we mentioned that

$$\left\|\partial^2 u\right\|_{C^0} \not\lesssim \left\|\Delta u\right\|_{C^0} \quad \text{and} \quad \left\|\partial^2 u\right\|_{C^1} \not\lesssim \left\|\Delta u\right\|_{C^1} \tag{1}$$

for $u \in C_c^3(\mathbb{R}^n)$. However, Korn showed that

 $[\partial^2 u]_\alpha \lesssim [\Delta u]_\alpha$

for any $a \in (0, 1)$. We will spend the next few lectures proving results involving the α -Hölder norms, culminating in a proof of the Schauder inequality. In the process we will also see why the bounds in (1) fail. The α -Hölder norms provide an intermediate measure of smoothness between C^0 and C^1 , and offer valuable control on solutions to $\Delta u = f$ and $\Delta u = 0$ with boundary conditions.

To approach Korn's inequality, we will use an expression for $\partial^2 u$ in terms of Δu . This formula is derived from physical potential theory. The "gravitational" field in \mathbb{R}^n is given by

$$F_n(x) = c_n \frac{x}{\left|x\right|^n}$$

for some constant $c_n > 0$ and $x \neq 0$. As we shall see, it is most convenient to choose $c_n = \frac{1}{|S^{n-1}(1)|}$ to simplify divergence formulæ for F_n . In fact F_n is generated by the potential

$$\Gamma_n(x) = \begin{cases} c'_n \left| x \right|^{-n+2} & \text{if } n \ge 3 \\ c'_2 \log \left| x \right| & \text{if } n = 2 \end{cases}$$

for appropriate constants $c'_n > 0$. That is, $F_n = \nabla \Gamma_n$. Is is easy to calculate that $|\nabla \Gamma_n| \sim |x|^{-n+1}$ and $|\nabla^2 \Gamma_n| \sim |x|^{-n}$ for large |x|. Furthermore, div $F_n = 0$ at $x \neq 0$, so $\Delta \Gamma_n = 0$ for $x \neq 0$. We note in passing that div $F_n = 0$ may be derived without computation from the symmetry of F_n and the fact that

$$\int_{S^{n-1}(r)} F_n \cdot \hat{n} = 1 \tag{2}$$

is independent of r.

For the remainder of the lecture, let $\Omega \subset \mathbb{R}^n$ be an open bounded region with smooth boundary $\partial \Omega$. From div $F_n = 0$ for $x \neq 0$ and (2), we may easily verify that

$$\int_{\Omega} F_n \cdot \hat{n} = \begin{cases} 1 & \text{if } 0 \in \Omega \\ 0 & \text{if } 0 \notin \Omega. \end{cases}$$
(3)

This reflects the physical (and distribution theoretic) interpretation that div $F_n = \Delta \Gamma_n = \delta_0$. We now verify that convolution against Γ_n yields a solution to Poisson's equation.

Proposition 1. If $f \in C_c^2(\mathbb{R}^n)$ and $u \coloneqq \Gamma_n * f$, then $u \in C^2(\mathbb{R}^n)$ and $\Delta u = f$.

Proof. By definition,

$$u(x) = \int_{\Omega} f(y) \Gamma_n(x-y) \, dy = \int_{\Omega} \Gamma_n(y) f(x-y) \, dy.$$

These integral expressions are well-defined because $f \in C_c^0(\mathbb{R}^n)$ and $\Gamma_n \in L^1_{loc}(\mathbb{R}^n)$. Also, standard dominated convergence arguments show that we may bring first derivatives under the integral sign:

$$\partial_j u = \int_{\omega} f(y) \partial_j \Gamma_n(x-y) \, dy = \int_{\Omega} \Gamma(y) \partial_j f(x-y) \, dy$$

Again these expressions are well-defined because $f \in C_c^1$ and $\partial_j \Gamma_n \in L^1_{\text{loc}}(\mathbb{R}^n)$. Differentiating further, we have

$$\partial_i \partial_j u = \int_{\Omega} \Gamma(y) \partial_i \partial_j f(x-y) \, dy.$$

Note that we may not form a parallel expression with $\partial_i \partial_j \Gamma_n$, because $\partial_i \partial_j \Gamma_n \notin L^1_{\text{loc}}(\mathbb{R}^n)$. By continuity, it is sufficient to verify that

$$\int_{\Omega} \Delta u = \int_{\Omega} f$$

for all regions Ω satisfying the previously stated conditions. By the divergence theorem,

$$\int_{\Omega} \Delta u = \int_{\partial \Omega} \nabla u \cdot \hat{n} = \int_{\Omega} \left(\int_{\mathbb{R}^n} f(y) \nabla \Gamma_n(x-y) \, dy \right) \cdot \hat{n} \, dA(x).$$

We use Fubini to interchange the order of integration:

$$\int_{\Omega} \Delta u = \int_{\mathbb{R}^n} f(y) \left(\int_{\Omega} \nabla \Gamma_n(x-y) \cdot \hat{n} \, dA(x) \right) \, dy.$$

Now (3) implies that

$$\int_{\Omega} \Delta u = \int_{\mathbb{R}^n} f(y) \chi_{\Omega}(y) \, dy = \int_{\Omega} f.$$

Having proven a solution to the equation $\Delta u = f$, the question of uniqueness naturally arises. Could other expressions for u also solve Laplace's equation? We establish uniqueness in the case that u is compactly supported:

Proposition 2. If $u \in C_c^4(\mathbb{R}^n)$ and $f \coloneqq \Delta u$, then $u = \Gamma_n * f$.

Proof. Let $w \coloneqq \Gamma_n * f$, so $\Delta(u - w) = 0$. The maximum principle for harmonic functions shows that $\max_{B_R} |u - w| = \max_{\partial B_R} |u - w|$. Hence to verify that u = w it is sufficient to show that

$$\lim_{R \to \infty} \max_{\partial B_R} |u - w| = 0.$$

Since u is compactly supported, this is equivalent to showing that

$$\lim_{R \to \infty} \max_{\partial B_R} |w| = 0$$

This is simple when $n \ge 3$. After all, if supp $u \subset B_{R_0}$ and $|x| = R \ge 2R_0$, we have

$$|w(x)| = \left| \int_{\mathbb{R}^n} f(y) \Gamma_n(x-y) \, dy \right| \le \|f\|_{L^1(\mathbb{R}^n)} \sup_{|z| \ge R/2} |\Gamma_n(z)| \to 0$$

as $R \to \infty$. This estimate fails when n = 2, because Γ_2 does not decay as $|x| \to \infty$. We therefore deploy a more careful analysis, relying on the fact that f is the Laplacian of a compactly supported function. In particular,

$$\int_{\mathbb{R}^2} f(y) \, dy = \int_{B_{R_0}} \Delta u(y) \, dy = \int_{S_{R_0}} \nabla u(y) \cdot \hat{n} \, dA(y) = 0.$$

Hence when $|x| = R \ge 2R_0$,

$$\begin{split} |w(x)| &= \left| \int_{B_{R_0}} f(y) \Gamma_2(x) \, dy + \int_{B_{R_0}} f(y) [\Gamma_2(x-y) - \Gamma_2(x)] \, dy \right| \\ &= \left| \int_{B_{R_0}} f(y) [\Gamma_2(x-y) - \Gamma_2(x)] \, dy \right| \\ &\leq \int_{B_{R_0}} |f(y)| \, |y| \max_{[x,x-y]} |\nabla \Gamma_2| \, dy \\ &\leq R_0 \, \|f\|_{L^1(\mathbb{R}^2)} \, \sup_{|z| \ge R/2} |\nabla \Gamma_2(z)| \to 0 \end{split}$$

as $R \to \infty$.

Korn's inequality bounds the regularity of $\partial^2 u$ in terms of Δu for compactly supported functions. We therefore wish to adapt the expressions in Proposition 1 to derive formulæ for the second partials of u. However, as noted in the proof of Proposition 1, this goal is complicated by the fact that $\partial_i \partial_j \Gamma_n \notin L^1_{\text{loc}}(\mathbb{R}^n)$. Hence we may not directly write $\partial_i \partial_j u = (\Delta u) * \partial_i \partial_j \Gamma_n$. We might hope that the integral defining the convolution converges conditionally, i.e. that

$$\partial_i \partial_j u = \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} f(y) \partial_i \partial_j \Gamma_n(x-y) \, dy \tag{4}$$

for $u \in C_c^4(\mathbb{R}^n)$. However, this equation is patently false if we recall that $\Delta\Gamma_n(z) = 0$ for $z \neq 0$. If we use (4) with i = j and sum over $1 \leq i \leq n$, we find $\Delta u = 0$, regardless of the choice of u. Hence we need to account somehow for the effect of the singularity of Γ_n on derivatives of the convolution $(\Delta u) * \Gamma_n$. As it turns out,

(4) is *almost* correct:

Proposition 3. If $f \in C_c^2(\mathbb{R}^n)$ and $u \coloneqq f * \Gamma_n$, then

$$\partial_i \partial_j u(x) = \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} f(y) \partial_i \partial_j \Gamma_n(x-y) \, dy + \frac{1}{n} \delta_{ij} f(x).$$
(5)

Proof. As noted in the proof of Proposition 1, we may certainly write

$$\partial_i \partial_j u(x) = \partial_i \int_{\mathbb{R}^n} f(y) \partial_j \Gamma_n(x-y) \, dy = \partial_i \int_{\mathbb{R}^n} f(x-y) \partial_j \Gamma_n(y) \, dy = \int_{\mathbb{R}^n} \partial_i f(x-y) \partial_j \Gamma_n(y) \, dy.$$

The game of switching the convolution arguments between y and x - y is necessary because the derivatives ∂_i and ∂_j act on x, not y. Because $\partial_j \Gamma_n$ is locally integrable, we have

$$\partial_i \partial_j u(x) = \lim_{\varepsilon \to 0^+} \int_{|y| > \varepsilon} \partial_i f(x - y) \partial_j \Gamma_n(y) \, dy$$
$$= \lim_{\varepsilon \to 0^+} \partial_i \int_{|y| > \varepsilon} f(x - y) \partial_j \Gamma_n(y) \, dy$$
$$= \lim_{\varepsilon \to 0^+} \partial_i \int_{|x - y| > \varepsilon} f(y) \partial_j \Gamma_n(x - y) \, dy.$$

We wish to once again move the derivative ∂_i inside the integral, but the region of integration now depends on x. Accounting for this:

$$\partial_i \int_{|x-y|>\varepsilon} f(y)\partial_j \Gamma_n(x-y) \, dy = \int_{|x-y|>\varepsilon} f(y)\partial_i \partial_j \Gamma_n(x-y) \, dy + \int_{|x-y|=\varepsilon} (\hat{x}_i \cdot \hat{n}) f(y)\partial_j \Gamma_n(x-y) \, dy.$$

Hence

$$\partial_i \partial_j u(x) = \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} f(y) \partial_i \partial_j \Gamma_n(x-y) \, dy + \lim_{\varepsilon \to 0^+} \int_{|x-y| = \varepsilon} (\hat{x}_i \cdot \hat{n}) f(y) \partial_j \Gamma_n(x-y) \, dy.$$

To complete the proof, we need to compute the second integral on the right hand side. As $\varepsilon \to 0^+$, we note that $\hat{x}_i \cdot \hat{n} = \mathcal{O}(1)$, $f(y) = f(x) + \mathcal{O}(\varepsilon)$, and $\partial_j \Gamma_n(x-y) = \mathcal{O}(\varepsilon^{-n+1})$. The region of integration is a sphere of volume $\mathcal{O}(\varepsilon^{n-1})$. We therefore see that we may replace f(y) by f(x) in the integral to achieve the same limit. That is:

$$\begin{split} \lim_{\varepsilon \to 0^+} \int_{|x-y|=\varepsilon} (\hat{x}_i \cdot \hat{n}) f(y) \partial_j \Gamma_n(x-y) \, dy &= f(x) \lim_{\varepsilon \to 0^+} \int_{|x-y|=\varepsilon} (\hat{x}_i \cdot \hat{n}) \partial_j \Gamma_n(x-y) \, dy \\ &= f(x) \lim_{\varepsilon \to 0^+} \int_{S^{n-1}(\varepsilon)} c_n \frac{z_i z_j}{|z|^{n+1}} \, dA(z) \\ &= \frac{1}{n} \delta_{ij} f(x). \end{split}$$