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Today, we’ll finish up the proof of the Calderon-Zygmund theorem and see some examples.

Part IV: Duality. Recall that we have already proven CZ for 1 < p ≤ 2. Now, let p be such that
2 < p <∞ and let p′ be the dual exponent (so 1 < p < 2). Then, we have that

‖Tf‖p = sup
‖g‖

Lp′≤1

ˆ
Tf · g

= sup

ˆ ˆ
f(y)K(x− y) dy g(x) dx

= sup

ˆ
f(y)

ˆ
K(x− y)g(x) dx dy

= sup

ˆ
f · (K ∗ g)

≤ ‖f‖p · sup ‖Tg‖Lp′

. ‖f‖p,

by CZ for p′. We note here that K(x) is defined as K(−x) and Tg = g ∗K. This completes the
proof the the Calderon-Zygmund theorem.

Let us look at an application of CZ now. Suppose that fk : Rd → C,

supp f̂k ⊂ Ak = {ω : 2k−1 ≤ |ω| ≤ 2k+1},

and f =
∑
fk. We’ll call this condition (*).
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The intuition here is that the fk should be almost independent. That is, knowing that fk(x) ∈ [a, b]
shouldn’t tell you that much about the value of f`(x) for ` 6= k. If the fk were indeed independent,
then ∣∣∣∑ fk

∣∣∣ ∼ (∑ |fk|2
)1/2

with high probability in x. The next theorem says that our intuition is pretty much what happens.

Theorem 1 (Littlewood-Paley). If (*) holds, then

‖f‖Lp ∼
∥∥∥∥(∑ |fk|2

)1/2∥∥∥∥
p

(up to a factor C(p, d)).

What we’ll prove today is the . in the above theorem. Define

Tkg = (ψkĝ)∨.

Here, ψk is a bump function where ψk = 1 on Ak, and is supported on Ãk := {ω : 2k−2 ≤ |ω| ≤
2k+2}. We also want ψk as smooth as possible, and we can show that we can construct ψk so that
|ψk| ≤ 1, |∂ψk| ≤ 2−k, |∂2ψk| ≤ 2−2k, and so on. We note that Tkfk = fk.

Now, we define ~g = (. . . , g−1, g0, g1, . . .) and ~T~g =
∑

k Tkgk. Note here that ~T ~f = f . Then,

|~g(x)| =

(∑
k

|gk(x)|2
)1/2

and

‖~g‖p =

∥∥∥∥∥∥
(∑

k

|gk|2
)1/2

∥∥∥∥∥∥
p

= RHS of L-P.

Theorem 2. ‖~T~g‖p . ‖~g‖p for all 1 < p <∞ implies the previous theorem (by taking ~g = ~f).

Notice that Tkgk = gk ∗ ψ∨k and

~T~g = ~g ∗ ~ψ∨ =

ˆ
~g(y) · ~ψ∨(x− y) dy =

ˆ ∑
k

gk(x)ψ∨k (x− y) dy.

In Calderon-Zygmund, our f and K were scalar valued. Now, we have that ~g, ~K are vector valued
in `2. But this turns out not to be an issue since the proof of Calderon-Zygmund applies almost
verbatim for vector valued functions.

So to be able to apply Calderon-Zygmund, we need to theck three things:
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(i) (
∑

k |ψ∨k (x)|2)1/2 . |x|−d

(ii) (
∑

k |∂ψ∨k (x)|2)1/2 . |x|−d−1

(iii) ‖~T~g‖2 . ‖~g‖2

Proof. Let’s prove each of the three statements above.

(i) We have that |ψ∨k (x)| ≤ ‖ψk‖L1 ∼ 2kd and |ψ∨k (x)| ∼ 2kd for |x| . 2−k. It also decals rapidly
when |x| � 2−k by smoothness (which we can prove by integration by parts). So we have
that ∑

k

|ψ∨k (x)|2 .
∑
|x|.2−k

22dk + rapidly decreasing terms . |x|−2d.

Now, we get the bound we want by taking square roots.

(ii) We have that |∂ψ∨k (x)| = |(2πiωψk)∨(x)|. Now, |ωψk| . 2k and |∂(ωψk)| . 1, . . . so
|∂ψ∨k (x)| . 2k(d+1) on |x| . 2−k and is rapidly decaying for |x| � 2−k. Therefore, we
have that ∑

k

|∂ψ∨k (x)|2 .
∑
|x|.2−k

22k(d+1) + rapidly decreasing terms . 2−2(d+1).

Again, we can take square roots to get that bound that we want.

(iii) We have that

‖~T~g‖22 = ‖
∑

gk ∗ ψ∨k ‖22 = ‖
∑

ψk · ĝk‖22 =

ˆ
|
∑

ψk · ĝk|2.

Note now that for all ω, there are ≤ 4 nonzero terms in the above sum. So we have that

‖~T~g‖22 .
ˆ ∑

k

|ψkĝk|2 ≤
∑
k

ˆ
|ĝk|2 =

ˆ ∑
k

|gk|2 = ‖~g‖22.

Taking square roots give us the bound that we want.

From this lemma and the Calderon-Zygmund theorem, we have the Littlewood-Paley theorem.
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