18.156 Lecture Notes

April 15, 2015

trans. Jane Wang

Today's class will be split up into a discussion of the last problem set and then a continuation of our discussion of Calderon-Zygmund.

1 Pset 4, Problem 3

We're going to start today with a discussion of problem 3 on the previous homework assignment (problem set 4). A lot of people tried to prove that

$$V_{Tf_k}(2^{\ell}) \lesssim |S_k(f)|^{q_{\theta}/p_{\theta}} 2^{kq_{\theta}} 2^{-\ell q_{\theta}} 2^{-\epsilon|k-\ell|}.$$

Unfortunately, this isn't quite true. Instead, let

$$A := |S_k(f)|^{q_\theta/p_\theta} 2^{kq_\theta} 2^{-\ell q_\theta}.$$

We get two bounds from our two $||Tf_k||_{q_i} \leq ||f_k||_{p_i}$ bounds, and we should let $\bar{\ell}$ be the value of ℓ where the two things that we get from these bounds are equal to each other, and use $\bar{\ell}$ instead of k. Then,

$$V_{Tf_k}(2^\ell) \lesssim A 2^{-\epsilon |\ell - \bar{\ell}|}$$

and when $|\ell - \bar{\ell}|$ is big, we have a gain. We note here that $\bar{\ell}$ depends on both K and $|S_k(f)|$. We want when

$$|S_k(f)|^{q_1/p_1} 2^{kq_1} 2^{-\ell q_1} = |S_k(f)|^{q_0/p_0} 2^{kq_0} 2^{-\ell q_0}.$$

We can solve this for $\bar{\ell}$ if $q_0 \neq q_1$. If $q_1/q_0 \neq p_1/p_0$, then $|S_k(f)|$ matters. For the special case when $q_1 = \infty$, then $V_{Tf_k}(2^{\ell}) = 0$ if $2^{\ell} \gg \ldots$ and $\bar{\ell}$ is the biggest ℓ consistent with the L^{∞} bound. Now,

$$\begin{aligned} \|Tf_k\|_{q_{\theta}}^{p_{\theta}} &\sim \sum_{\ell} V_{Tf_k}(2^{\ell}) 2^{\ell q_{\theta}} \\ &\leq \sum_{\ell} |S_k(f)|^{q_{\theta}/p_{\theta}} 2^{kq_{\theta}} 2^{-\epsilon|\ell-\bar{\ell}|} \sim \|f_k\|_{p_{\theta}}^{q_{\theta}}. \end{aligned}$$

Now, we want to try to combine all of the Tf_k . We have two extreme cases. In the first case, we could have that $k \mapsto \bar{\ell}(k)$ is injective, in which case we can use weights. In the econd case, $f_k \neq 0 \leftrightarrow k = 1, \ldots, N$ and $\bar{\ell}(k) = 0$ for all $k = 1, \ldots, N$. Then,

$$\|Tf\|_{q_{\theta}} \lesssim \sum_{k} \|Tf_k\|_{q_{\theta}} \lesssim \sum_{k} |S_k(f)|^{1/p_{\theta}} 2^k,$$

and we want this $\lesssim (\sum_k |S_k(f)| 2^{kp_\theta})^{1/p_\theta}$. But having $\bar{\ell}(k) = 0$ for all $k = 1, \ldots, N$ gives a formula for $|S_k(f)|$ and $|S_k(f)|^{1/p_\theta} 2^k$ gives a geometric series. We get then that

$$2^{\ell} = (2^k)^{\alpha} |S_k(f)|^{\beta}.$$

2 Calderon-Zygmund

Let's go back to the Calderon-Zygmund decomposition lemma. Let us state it again here:

Lemma 1. For $f \in C_c^0$, $\lambda > 0$, we can decompose f = b + s, the sum of a balanced part and a small part, such that $\|b\|_1 + \|s\|_1 \leq \|f\|_1$ and $\|s\|_{\infty} \leq \lambda, b = \sum b_j$ where b_j are balanced for λ supported on disjoint Q_j and

$$\int_{Q_j} b_j \lesssim \int_{Q_j} f \lesssim \lambda$$

Proof. We're going to use a Calderon-Zygmund iterated stopping time algorithm to construct Q_j and b_j . Start with a cubical grid in \mathbb{R}^d of side length s large and $f_Q |f| < \lambda$ in each cube.

[Call this point in the algorithm (A).] Now, consider each Q.

- (i) If $\int_Q |f| < \lambda$, subdivide Q into 2^d equally sized cubes and repeat this step (A) with each of the subdivided cubes.
- (ii) If $f_Q |f| \ge \lambda$, add Q to the list of balanced cubes, call it Q_j , and let

$$b_j = f \cdot \chi_{Q_j} - \int_{Q_j} f.$$

Do not go back to (A) with this cube.

The output of the algorithm is $\{Q_j\}$ and a function b_j for each Q_j . Then, let

$$b = \sum b_j, \ s = f - b.$$

Q_2		Q_3		Q_1			
						\mathcal{Q}	\mathbf{P}_4
		Ç) 5				

We can make some observations now. First,

$$\lambda \leq \int_{Q_j} |f| < 2^d \lambda$$

We also have some bound for s. If $x \notin \bigcup Q_j$, then

$$|s(x)| = |f(x)| \le \lambda.$$

If $x \in Q_j$, then

$$|s(x)| = |f(x) - b_j(x)| = \left| \oint_{Q_j} f \right| \le \oint_{Q_j} |f| \le 2^d \lambda,$$

and so we have that

$$\int_{\mathbb{R}^d \setminus \bigcup Q_j} |s| = \int_{\mathbb{R}^d \setminus \bigcup Q_j} |f| \le \|f\|_{L^1}.$$

From this, we get that

and

$$\int_{\bigcup Q_j} |s| \le \int_{\bigcup Q_j} |f| \le \|f\|_{L^1},$$

so $||s||_1 \leq ||f||_1$. We also have bounds for the b_j :

$$\begin{aligned} f_{Q_j} |b_j| &= f_{Q_j} \left| f - f_{Q_j} f \right| \le 2 \int_{Q_j} |f| \\ \int_{Q_j} b_j &= \int_{Q_j} f - \int_{Q_j} f = 0. \end{aligned}$$

This lemma then helps us conclude part II of the proof of Calderon-Zygmund, since $V_{Tf}(2\lambda) \leq V_{Ts}(\lambda) + V_{Tb}(\lambda)$. By the L^2 bound $V_{Tf}(\lambda \leq ||f||_1 \lambda^{-1})$. We also have that

$$V_{Tb}(\lambda) \leq \left| \bigcup_{j} 2Q_{j} \right| + \lambda^{-1} \int_{\mathbb{R}^{d} \setminus \bigcup 2Q_{j}} |Tb|$$

$$\lesssim \left| \bigcup_{j} Q_{j} \right| + \sum_{j} \lambda^{-1} \int_{\mathbb{R}^{d} \setminus 2Q_{j}} |Tb_{j}|$$

$$\lesssim \|f\|_{1}\lambda^{-1} + \lambda^{-1} \sum_{j} \|b_{j}\|_{1}$$

$$\lesssim \lambda^{-1}(\|s\|_{1} + \|b\|_{1})$$

$$\lesssim \lambda^{-1} \|f\|_{1}.$$

Part III: Interpolation. Since we have a weak L^1 bound and a strong L^2 bound, we can use Marcinkiewicz interpolation to get the bound $||Tf||_p \leq ||f||_p$ for 1 .