
18.156 Lecture Notes

April 15, 2015

trans. Jane Wang

——————————————————————————

Today’s class will be split up into a discussion of the last problem set and then a continuation of
our discussion of Calderon-Zygmund.

1 Pset 4, Problem 3

We’re going to start today with a discussion of problem 3 on the previous homework assignment
(problem set 4). A lot of people tried to prove that

VTfk(2`) . |Sk(f)|qθ/pθ2kqθ2−`qθ2−ε|k−`|.

Unfortunately, this isn’t quite true. Instead, let

A := |Sk(f)|qθ/pθ2kqθ2−`qθ .

We get two bounds from our two ‖Tfk‖qi . ‖fk‖pi bounds, and we should let ¯̀ be the value of `
where the two things that we get from these bounds are equal to each other, and use ¯̀ instead of
k. Then,

VTfk(2`) . A2−ε|`−
¯̀|

and when |`− ¯̀| is big, we have a gain. We note here that ¯̀ depends on both K and |Sk(f)|. We
want when

|Sk(f)|q1/p12kq12−`q1 = |Sk(f)|q0/p02kq02−`q0 .

We can solve this for ¯̀ if q0 6= q1. If q1/q0 6= p1/p0, then |Sk(f)| matters. For the special case when
q1 =∞, then VTfk(2`) = 0 if 2` � . . . and ¯̀ is the biggest ` consistent with the L∞ bound. Now,

‖Tfk‖pθqθ ∼
∑
`

VTfk(2`)2`qθ

≤
∑
`

|Sk(f)|qθ/pθ2kqθ2−ε|`−¯̀| ∼ ‖fk‖qθpθ .

Now, we want to try to combine all of the Tfk. We have two extreme cases. In the first case,
we could have that k 7→ ¯̀(k) is injective, in which case we can use weights. In the econd case,
fk 6= 0↔ k = 1, . . . , N and ¯̀(k) = 0 for all k = 1, . . . , N . Then,

‖Tf‖qθ .
∑
k

‖Tfk‖qθ .
∑
k

|Sk(f)|1/pθ2k,
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and we want this . (
∑

k |Sk(f)|2kpθ)1/pθ . But having ¯̀(k) = 0 for all k = 1, . . . , N gives a formula
for |Sk(f)| and |Sk(f)|1/pθ2k gives a geometric series. We get then that

2
¯̀

= (2k)α|Sk(f)|β.

2 Calderon-Zygmund

Let’s go back to the Calderon-Zygmund decomposition lemma. Let us state it again here:

Lemma 1. For f ∈ C0
c , λ > 0, we can decompose f = b+s, the sum of a balanced part and a small

part, such that ‖b‖1 + ‖s‖1 . ‖f‖1 and ‖s‖∞ ≤ λ, b =
∑
bj where bj are balanced for λ supported

on disjoint Qj and

−
ˆ
Qj

bj . −
ˆ
Qj

f . λ.

Proof. We’re going to use a Calderon-Zygmund iterated stopping time algorithm to construct Qj
and bj . Start with a cubical grid in Rd of side length s large and −́Q |f | < λ in each cube.

[Call this point in the algorithm (A).] Now, consider each Q.

(i) If −́Q |f | < λ, subdivide Q into 2d equally sized cubes and repeat this step (A) with each of
the subdivided cubes.

(ii) If −́Q |f | ≥ λ, add Q to the list of balanced cubes, call it Qj , and let

bj = f · χQj −−
ˆ
Qj

f.

Do not go back to (A) with this cube.

The output of the algorithm is {Qj} and a function bj for each Qj . Then, let

b =
∑

bj , s = f − b.

Q1

Q2 Q3

Q4

Q5
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We can make some observations now. First,

λ ≤ −
ˆ
Qj

|f | < 2dλ.

We also have some bound for s. If x 6∈
⋃
Qj , then

|s(x)| = |f(x)| ≤ λ.

If x ∈ Qj , then

|s(x)| = |f(x)− bj(x)| =

∣∣∣∣∣−
ˆ
Qj

f

∣∣∣∣∣ ≤ −
ˆ
Qj

|f | ≤ 2dλ,

and so we have that ˆ
Rd\

⋃
Qj

|s| =
ˆ
Rd\

⋃
Qj

|f | ≤ ‖f‖L1 .

From this, we get that ˆ
⋃
Qj

|s| ≤
ˆ
⋃
Qj

|f | ≤ ‖f‖L1 ,

so ‖s‖1 ≤ ‖f‖1. We also have bounds for the bj :

−
ˆ
Qj

|bj | = −
ˆ
Qj

∣∣∣∣∣f −−
ˆ
Qj

f

∣∣∣∣∣ ≤ 2

ˆ
Qj

|f |

and ˆ
Qj

bj =

ˆ
Qj

f −
ˆ
Qj

f = 0.

This lemma then helps us conclude part II of the proof of Calderon-Zygmund, since VTf (2λ) ≤
VTs(λ) + VTb(λ). By the L2 bound VTf (λ . ‖f‖1λ−1. We also have that

VTb(λ) ≤

∣∣∣∣∣∣
⋃
j

2Qj

∣∣∣∣∣∣+ λ−1

ˆ
Rd\

⋃
2Qj

|Tb|

. |
⋃
j

Qj |+
∑
j

λ−1

ˆ
Rd\2Qj

|Tbj |

. ‖f‖1λ−1 + λ−1
∑
j

‖bj‖1

. λ−1(‖s‖1 + ‖b‖1)

. λ−1‖f‖1.

Part III: Interpolation. Since we have a weak L1 bound and a strong L2 bound, we can use
Marcinkiewicz interpolation to get the bound ‖Tf‖p . ‖f‖p for 1 < p ≤ 2.
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