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We’re going to start off today with some applications of interpolation. Then, we’ll move on to
discussing the Calderon-Zygmund Theorem.

1 Applications of Interpolation

1.1 Hardy-Littlewood Maximal Function

Our first application will be about the Hardy-Littlewood maximal function. Let f : Rd → C. Then
the maximal function of f is defined to be

Mf(x) := sup
r>0
−
ˆ
B(x,r)

|f |.

For example, if f = χB(0,1), then Mf(x) ∼ (1 + |x|)−d and ‖Mf‖Lp <∞ if and only if p > 1.

Theorem 1. ‖Mf‖p ≤ C(d, p)‖f‖Lp for all d, p with 1 < p ≤ ∞.

Notice that our above example shows why we could not expect an inequality like this to hold if
p = 1. Also, we remark that we always have an inequality ‖Mf‖∞ ≤ ‖f‖∞. Now, to apply the
Marcinkiewicz interpolation theorem to get the above bound for all 1 < p ≤ ∞, it suffices to find
a weak L1 bound. This is the content of the next lemma.

Lemma 2 (Weak L1). VMf (λ) · λ . ‖f‖L1.

Proof. Suppose Mf(x) > λ. Then, there would exist an r > 0 for which −́B(x,r) |f | > λ. Let us call

such a B(x, r) a λ-dense ball. Then,

{x : Mf(x) > λ} ⊂
⋃
{λ-dense balls}.

Now recall the Vitali Covering Lemma: if {Bj}j∈J is a finite list of balls, then there exists I ⊂ J
such that {Bj}j∈I are disjoint and ⋃

i∈I
3Bi ⊇

⋃
j∈J

Bj .

1



However, we can’t use this this because our collection of λ-dense balls is not finite. However, we
recall the infinite version of the Vitali convering lemma that says that if the supremum of the radius
of our balls is finite, then the Vitali covering lemma holds with 3 replaced by 5 and the finite family
J replaced by a countable one.

So if we let K = {x : Mf(x) > λ}, then K ⊂ {Bi}i∈I , where the Bi range over all λ-dense balls.
On each of these balls, we have that ˆ

Bj

|f | > t|Bj |

and such balls are of bounded radius as f ∈ L1, so we can apply the Vitali covering lemma. So we
have a countable subset J ⊂ I for which

K ⊆
⋃
j∈J
⊆
⋃
i∈I

5Bi.

Now, we have that

VMf (λ) = |K| ≤ sumj∈J |5Bj | ≤ 5d
∑
j∈J
|Bj | ≤ 5d

(ˆ
⋃

J Bj

|f |

)
· λ−1 . λ−1‖f‖L1 ,

which is the bound that we wanted to prove.

Remark: Stein in the 1970s removed the dependence on d in this theorem. So this theorem can
be strengthened to say that ‖Mf‖p ≤ C(p)‖f |p.

1.2 Young’s Inequality

Our next application of interpoliation is the following theorem:

Theorem 3 (Young’s Inequality).

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq

if 1
r + 1 = 1

p + 1
q .

Proof. Let us consider the operator Tgf = f ∗ g and use interpolation. Our boundary cases are
r = q and r =∞. First, for r = q, we have that∥∥∥∥ˆ f(y)g(x− y) dy

∥∥∥∥
q

=

∥∥∥∥ˆ f(y)gy(x)

∥∥∥∥
q

≤
ˆ
|f(y)|‖gy‖q dy

= ‖f‖1‖g‖q,
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where the second line is a result of the integral form of Minkowski’s inequality ‖f+g‖q ≤ ‖f‖q+‖g‖q.
In the r =∞ case, we have that∣∣∣∣ˆ f(y)g(x− y) dy

∣∣∣∣ ≤ ‖f‖p‖g(x− y)‖q = ‖f‖p‖g‖q,

by Holder’s inequality if 1
p + 1

q = 1. Now, we can apply the general form of the Marcinkiewicz

inequality, interpolating between the pairs (q, 1) and (∞, q
q−1) to get Young’s inequality.

1.3 Hardy-Littlewood-Sobolev

Our last application will be the Hardy-Littlewood-Sobolev inequality. Consider the following ex-
ample:

Tαf = f ∗ (|x|−α)

on Rd. Notice that |x|−α is “almost” in Ld/α.

Theorem 4 (Hardy-Littlewood-Sobolev). If 0 < α < d, p > 1, 1r + 1 = 1
p + α

q , then

‖Tαf‖Lr . ‖f‖Lp .

Proof Sketch. There are three main steps in this proof:

1. First, notice that

Tαf(x) = c

ˆ ∞
0

dr · rd−α−1−
ˆ
B(x,r)

f.

2. Now we have two estimates ∣∣∣∣∣−
ˆ
B(x,r)

f

∣∣∣∣∣ ≤Mf(x) (A)

and ∣∣∣∣∣−
ˆ
B(x,r)

f

∣∣∣∣∣ ∼ r−d
∣∣∣∣∣
ˆ
B(x,r)

1 · f

∣∣∣∣∣ ≤ r−d · rd/q‖f‖p. (B)

3. We can combine the above estimates to get that

Tfα(x) .
ˆ ∞
0

rd−α−1 min(A,B) dr.

Now, we want to decide when A ≤ B and then integrate. Doing this, we get that

Tfα(x) .Mf(x)1 · ‖f‖bp
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for 0 < a, b and a+ b = 1 (by scaling). It follows then thatˆ
|Tfα|r . ‖f‖b·rp

ˆ
Mfa·r . ‖f‖b·rp ‖f‖a·ra·r,

where the last inequality is a result of our result about the Hardy-Littlewood maximal func-
tion. To finish, we solve p = a · r.

2 Calderon-Zygmund

We’re going to spend the next couple of classes talking about the Calderon-Zygmund theorem.
First, let us consider the following theorem:

Theorem 5. If u ∈ C∞c (Rd), then for all 1 < p <∞,

‖∂i∂ju‖Lp . ‖∆u‖Lp .

Remark: We already proved this for p = 2, and we saw that it is false for p = ∞. For the p = 2
case, we wrote u = ∆u ∗ Γ and then examined the second derivatives.

As an application, notice that if u ∈ C∞c (B1) with |∆u| ≤ 1, then

|{x : |∂i∂ju(x)| > λ}| ≤ ‖∂i∂ju‖pLp · λ−p.

For p = 2, this implies that | · | . λ−2 and for general p, we have that | · | . Cpλ
−p.

Related to this is the Calderon-Zygmund theorem, which we state here:

Theorem 6 (Calderon-Zygmund). If Tf = f ∗K, where

|K(x)| . |x|−d, |∂K(x)| . |x|−d−1,
ˆ
Sr

K = 0

for all r (initially, we’ll suppose that K ∈ C0
c ), then ‖Tf‖p . ‖f‖p, 1 < p <∞.

We’ll start the proof of this theorem next class. It has four main steps:

1. An L2 estimate ‖Tf‖2 . ‖f‖2

2. A weak L1 estimate VTf (λ) · λ . ‖f‖L1

3. Now interpolation will give us an Lp estimate for 1 < p ≤ 2

4. A duality argument will then give us 2 ≤ p <∞

4


