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22.1 Precursor to Schrödinger Equation

Suppose we are trying to find u(x, t) with u(x, 0) = f(x) satisfying one of the following three PDEs:

A: ∂tu = ∂4xu

B: ∂tu = −∂4xu

C: ∂tu = i∂4xu

We can take then take the Fourier transform of each of these, corresponding to

A’: ∂tû(w, t) = (2πiw)4û(w, t)

B’: ∂tû(w, t) = −(2πiw)4û(w, t)

C’: ∂tû(w, t) = i(2πiw)4û(w, t)

Each of these can now be formally solved in this frequency domain, since these are just separable differential
equations (and the initial data f corresponds to initial data f̂). However, such solutions might or might not
correspond to legitimate solutions u, since if the formal solution for û is not well enough behaved in w, then
one cannot take the Fourier transform to get a corresponding solution u. We analyze each case separately.

A: Solving yields û(w, t) = exp(Cw4t)f̂(w). For almost all initial data, this solution goes bananas for
t > 0, because exp(Cw4t) grows too fast. Thus, we can’t possibly take a Fourier transform to find

a legitimate solution u(x, t). For example, if f = e−πx
2

, which decays quite nicely, then f̂ = e−πw
2

,

which although it still decays nicely, is taken over by exp(Cw4t) for any t > 0. Of course, if f̂ ∈ C∞c ,
then we get a solution.

B: Solving yields û(w, t) = exp(−Cw4t)f̂(w). For t > 0, for most f̂ , u will become immediately quite

smooth. If f ∈ L1, then f̂ is bounded, and so û(w, t) decays rapidly, which means that taking the
Fourier transform, u(x, t) is C∞. In fact, we can say a bit more.

Proposition 1. ‖∂kxu(x, 1)‖L∞ ≤ Ck‖f‖L1

Proof. We have

|∂kxu(x, 1)| ≤ ‖∂̂kxu(w, 1)‖L1
w

= ‖(2πiw)ke−iw
4

f̂(w)‖L1

≤ ‖(2πiw)ke−iw
4

‖L1‖f̂‖L∞

≤ Ck‖f‖L1
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Even further, one can use either a scaling argument (since if u(x, t) is a solution to the differential
equation, so is u(λx, λ4t)) or a direct argument (presented below) to prove the following proposition:

Proposition 2. ‖u(x, t)‖L∞ . t−1/4‖f‖L1

Proof.

|u(x, t)| ≤ ‖û(w, t)‖L1
w

= ‖e−Cw
4tf̂(w)‖L1

≤ ‖e−Cw
4t‖L1‖f̂‖L∞

≤ t−1/4C‖f‖L1

C: Solving in the frequency domain yields (up to rescaling) û(w, t) = eiw
4tf̂(w). Note that this means

that if f̂ is Schwartz, then so is û, so in particular, if f is itself Schwartz, then so is f̂ , hence û, and so
we can take the Fourier transform and get a Schwartz function u satisfying the PDE. So at the very
least, we can solve for f Schwartz, which is a decently large class.

Proposition 3. ‖∂kxu(x, t)‖L2
x
is independent of t for each k ≥ 0.

Proof. By an application of Plancherel’s Theorem, this is equal to ‖(2πiw)keiw
4tf̂(w)‖L2

w
, and so the

exponential term has constant modulus 1 and does not affect this value.

What this means is that studying C is much more subtle than studying A or B, since the previous
proposition tells us that the ‘total mass’ in the solution of this equation is independent of t, so things
will not just blow up or become more regular as t increases. If we want to study decay, we need to be
careful. By scaling, if solutions to this PDE do decay, then it would need to do so in a way resembling
the following:

‖u(x, t)‖L∞
x

. t−1/4‖f‖L1 .

The main question is, does this hold?

22.2 The Schrödinger Equation

Instead of PDE C from the previous subsection, we will focus on the Schrödinger equation, which as we will
see immediately behaves quite similarly to the above.
The Schrödinger Equation: Find u(x, t), x ∈ Rd, t ∈ R, satisfying the initial condition u(x, 0) = f(x)
such that

∂tu = i∆u.

In the frequency domain, this amounts to solving the equation û(w, t) = ei|w|
2tf̂(w), and issues of convergence

are relatively similar to case C of the previous subsection. In fact, the same exact proves carry over to show:

Proposition 4. If f ∈ S, then we get a solution u ∈ S.

Proposition 5. For any multi-index I, ‖∂Ixu(x, t)‖L2
x
is independent of t.

We wish to understand the decay of the Schrödinger equation. In particular, we will prove the following
proposition:

Proposition 6. ‖u(x, t)‖L∞
x

. t−d/2‖f‖L1 .

Remark 7. There is in fact a nice formula for the solution, given by u(x, t) = t−d/2ei|x|
2/4t ∗ f(x), so that

the proposition becomes trivial. However, we want to have a more generalizable gadget for completing this
proof.
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Proof. We will complete the proof in the next lecture. For now, let us reduce the problem to a lemma.
First of all, note that

u(x, t) =

∫
û(w, t)eiwxdw

= lim
δ→0

∫
e−δw

2

ei|w|
2tf̂(w)eiwxdw

Now if we set Sδ,t(x) equal to the inverse Fourier transform of e−δ|w|
2

ei|w|
2t with respect to w, then we see

that
u(x, t) = lim

δ→0
Sδ,t(x) ∗ f(x).

In particular, we included the term e−δ|w|
2

so that we could take this Fourier transform in the first place.
Hence, we find that

‖u(x, t)‖L∞ ≤ lim inf ‖Sδ,t‖L∞‖f‖L1 .

It suffices therefore to prove that ‖Sδ,t‖L∞ . t−d/2 uniformly as δ → 0. By scaling, we need only prove in
fact that ‖Sδ,1‖L∞ is uinformly bounded by a constant. But this integral breaks up into a product as follows:

|Sδ,1(x)| =

∣∣∣∣∫
Rd
e−δ|w|

2

ei|w|
2

eiw·x dw

∣∣∣∣
=

d∏
j=1

∣∣∣∣∫
R
e−δw

2
j eiw

2
j eiwjxj dwj

∣∣∣∣
So it suffices to prove the one-dimensional case, the second of the following two lemmas:

Lemma 1.
∣∣∣∫R e−δw2

eiw
2

dw
∣∣∣ . 1 uniformly in δ.

Lemma 2.
∣∣∣∫R e−δw2

eiw
2

eiwx dw
∣∣∣ . 1 uniformly in δ, x.

We will prove these next time. Again, the second of these lemmas is what we actually need, but proving
the first gives us a good indication for how we might prove the second.

Lecture 23: 6 April 2015

23.1 Completion of proof

Proof Sketch of Lemma 1. Set η = w2. Then changing variables accordingly, we see∣∣∣∣∫ ∞
0

e−δw
2

eiw
2

dw

∣∣∣∣ =

∣∣∣∣∫ ∞
0

e−δηη−1/2eiηdη

∣∣∣∣ ,
and this kind of looks similar to the integration estimates in the Gauss circle problem. A bounded distance
away from 0, we can use the triangle inequality, while away from 0, we can integrate by parts. The main
term of integration will be η−3/2eiη, which is integrable.

Proof Sketch of Lemma 2. This is similar, but now eiw
2

is replaced with ei(wx+w
2). But w2 + wx is just a

quadratic centered around w0 := −x/2, and the same proof carries over where we change coordinates to
integrate around this center instead.

Remark 8. There is an alternative proof of these two. The oscillatory term gets faster and faster away from
w0, and so if we break the integral up into corresponding full periods in the real and imaginary parts, we
will get alternating sums which are at most as large as the first term, which can be bounded by the triangle
inequality.
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23.2 Statement of Strichartz Theorem

In fact, we see that by the same method, we can study |Sδ,t(x)| still for all δ, x, but also for all t, not
just t ≥ 0. Say we fix δ = 1. Of course, we know that the mass given by ‖S1(t, x)‖L2

x
remains constant

in time. At time t = 0, S1(t, x) has about height 1 and width 1, while at time |t| >> 1, it is defocused
with height about t−d/2 and width about t. For negative t, we get focusing data, while for positive t,
we get defocusing data, because if we solve the Schrödinger equation with this initial data, we just flow
with t getting larger, and for starting at negative t, this collimates around t = 0 and then defocuses again.
Qualitatively, the focusing and defocusing data are quite similar, so one expects it to be difficult to use
purely qualitative estimates to learn about what happens as we flow in time.

Nonetheless, we might be interested in what kinds of estimates we can still obtain. To motivate this,
consider the following question:

Question 1. For which p do we have the estimate

‖u(x, t)‖Lpx,t . ‖f‖L2 = mass1/2?

Intimately related is the question of how large is the set

{(x, t) : |u(x, t)| > t}?

Remark 9. For the function S1 we have been considering, we get such an estimate if and only if p > 2(d+1)
d ,

which we will see later.

So what about solutions to the Schrödinger equation? Note that if u solves the Schrödinger equation,
then uλ(x, t) := u(x/λ, t/λ2) also solves the Schrödinger equation with initial data fλ(x) = f(x/λ), and we
have

‖uλ‖Lpx,t ∼ λ
(d+2)/p‖u‖Lpx,t , ‖fλ‖L2 ∼ λd/2‖f‖L2 .

Hence, the only possible p which could possibly answer our question is when p = 2(d + 2)/d. In fact, this
equation is satisfied uniformly for all Sδ uniformly in δ if and only if p = 2(d+ 2)/d. Of course, it is worth
noting that Sδ,t(x) is by definition the solution to Schrödinger equation with initial data given by a Gaussian

(in particular the inverse Fourier transform of e−δw
2

). So one might expect the following theorem:

Theorem 10 (Strichartz, 1970’s). Set p = 2(d+ 2)/d. Then the estimate ‖u(x, t)‖Lpx,t . ‖u(•, 0)‖L2
x
holds

for all solutions to the Schrödinger equation.

The proof of this theorem will come later, but even here, we stumble upon a general sort of analytic
question:

Question 2. Let T be a given linear operator. Then find all p, q such that there is an inequality of the form

‖Tf‖Lp . ‖f‖Lq .

Example 11. Just something to think about: Consider g(x) := eix
2

(1 + |x|)−1/2, and let Tf := f ∗ g. Then
for what (p, q) do we get an inequality as above.

This is of course a difficult question, and currently, there is no universal way to solve this question.
However, there are many tools which can be used to attack it. We will see how interpolation is one extremely
useful tool, allowing us to take two given estimates of this form and yield an interval-worth of these estimates.

23.3 Interpolation

Interpolation of Lp spaces comes in two flavors, both from the first half of the 20th century. The first is
due to Riesz-Thorin, while the second is due to Marcinkiewicz. We will follow the Marcinkiewicz approach
instead, although see Remark 13. We begin with a special case of interpolation.

Theorem 12 (Interpolation, Special Case). If T is a linear operator, 1 ≤ p < r < q ≤ ∞, and ‖Tf‖Lp ≤
‖f‖Lp for all f ∈ Lp and ‖Tf‖Lq ≤ ‖f‖Lq for all f ∈ Lq, then for all f ∈ Lr, we have

‖Tf‖Lr ≤ C(p, q, r)‖f‖Lr .
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Remark 13. In this special case, Riesz-Thorin actually gives C(p, q, r) = 1, which is optimal. What the
Riesz-Thorin approach gives in terms of better bounds, the Marcinkiewicz approach makes up for in slightly
more general hypotheses, to be stated later, except for some fairly uninteresting cases which Marcinkiewicz
doesn’t cover but Riesz-Thorin does. We shall not concern ourselves with these matters from here on.

We won’t quite finish the proof today, but we’ll still do a little bit of work. The idea of the proof of
interpolation is to look at f and Tf at different height scales. Define

Skf := {x : 2k ≤ |f(x)| < 2k+1}, fk = f · χSkf .

Then we have f =
∑
k fk, and we get ‖f‖pLp ∼

∑
k |Sk(f)|2pk. The idea now is to use estimates on |S`(Tfk)|

and glue them together carefully to arrive at a proof. We shall work through this over the remainder of this
lecture and into next lecture. We begin with the estimate on |S`(Tfk)|.

Proposition 14. If ‖Tf‖p ≤ ‖f‖p for all f ∈ Lp, then |S`(Tfk)| ≤ 2p · 2(k−`)p · |Sk(f)|.

Proof. We have
|S`(Tfk)| · 2`p ≤ ‖Tfk‖pp ≤ ‖fk‖pp ≤ 2p · 2kp|Sk(f)|.

Hence, the proposition above gives us bounds on |S`(Tfk)| with respect to both p and q. Say p < q.
Then we see that if ` > k, then the q-bound is better, and vice versa if ` < k. This allows us to prove the
following corollary:

Corollary 15. If ‖Tf‖p ≤ ‖f‖p for all f ∈ Lp and ‖Tf‖q ≤ ‖f‖q for all f ∈ Lq with p < q, then there is a
constant ε(p, q, r) such that for p < r < q,

‖(Tfk)`‖Lr . 2−ε|`−k|‖fk‖Lr .

Proof. Suppose first that ` ≥ k. Then using the q-bounds, we find

‖(Tfk)`‖rr . 2r`|S`(Tfk)| ≤ 2r` · 2q · 2−(`−k)q|Sk(f)| = ‖fk‖rr2r`2−rk2q2−(`−k)q

and so
‖(Tfk)`‖r . 2(`−k)(1−q/r)2q/r‖fk‖r ≤ 2(`−k)(1−q/r)2q/p

and 1 − q/r < 0. We have a similar bound when k ≥ `, but instead we get our ε value is p/r − 1 (and the
extra 2q/p term disappears, though this doesn’t matter).

Lecture 24: 8 April 2015

24.1 Finishing the special case

Let’s add some extra notation. Set Vλ(f) := |{x : |f(x)| > λ}|. Of course, Vλ(f) · λp ≤ ‖Tf‖pp. Now, we will
actually show that the theorem we stated last time is true in a slightly weaker setting (and in fact, we’ve
already down some of the work).

Theorem 16 (Interpolation, Take II). Suppose T is sublinear (meaning |T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|),
and we have the so-called weak type estimates Vλ(Tf) · λp ≤ ‖f‖pp for all f ∈ Lp and Vλ(Tf) ≤ ‖f‖qq for all
f ∈ Lq, say with 1 ≤ p < r < q ≤ ∞. Then

‖Tf‖Lr ≤ C(p, q, r)‖f‖Lr .

Remark 17. If we had the weak type estimates, but with constants Ap and Aq, then our concluding estimate
would have an extra factor of AαpA

1−α
q , with 1

r = α 1
p + (1 − α) 1

q . This is a simple scaling argument, so it
suffices to prove for Ap = Aq = 1.

We have

Lemma 3. Vλ(Tfk) ≤ (2k/λ)p|Sk(f)| (and also for q).
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Proof. Vλ(Tfk) · λp ≤ ‖fk‖pp ∼ |Sk(f)|2kp.

Lemma 4. V2`(Tfk) · 2`r . |Sk(f)| · 2kr · 2−ε|k−`|

Proof. Essentially done last time.

Corollary 18. ‖Tfk‖Lr . ‖fk‖Lr

Proof. We have Tfk ≤
∑
` 2`χV

2`
(Tfk), so taking Lr norms and using the previous lemma gives the result.

Our goal is now to add the contributions from all of these height scales. The näıve approach would be
to simply use the sublinearity of T to give

‖Tf‖Lr ≤
∑
k

‖Tfk‖Lr . ‖fk‖Lr

At this point, we’d have trouble bounding by ‖f‖Lr . Instead, we want to use the info from our bounds on
|Sk(f)| to change the first inequality. The correct way to do this is with the following lemma, which is the
tricky part of the argument.

Lemma 5. VTf (2`) .
∑
k |Sk(f)| · 2kr · 2−`r · 2−ε|k−`|

Proof. This would be easy if |Tf(x)| ≥ 2` implied that there exists a k with |Tfk(x)| ≥ 2`. Unfortunately,
we don’t have this, but we can be a little bit more clever. For each `, choose weights wk with

∑
k wk = 1,

which we will choose later. Then the sublinearity of T means that if |Tf(x)| ≥ 2`, then there is some k with
|Tfk(x)| ≥ wk · 2`. So we find that

V2`(Tf) ≤
∑
k

Vwk·2`(Tfk) ≤
∑
k

|Sk(f)| · 2kr · 2−`r · w−ck · 2
−ε|k−`|.

So if we choose wk ≈ 1
(`−k)2 with constant chosen so that

∑
wk = 1, then the w−ck term is dominated by the

exponential decay of the 2−ε|k−`| term, and so we can replace ε by an arbitrarily smaller value and obtain
the same result.

The rest of the proof is now easy.

‖Tf‖rr .
∑
`

V2`(Tf) · 2`r

.
∑
`

∑
k

|Sk(f)|2kr2−ε|k−`|

Summing in `, we see this is on the order of
∑
k |Sk(f)|2kr, which is itself about ‖f‖rr.

24.2 Statement of the General Case

The following is essentially the content of a problem on the 4th PSet, and is again discussed in the April 15
notes.

Theorem 19 (Marcinkiewicz Interpolation). Suppose 1 ≤ pi ≤ qi ≤ ∞ for i = 0, 1 with q0 6= q1. If T
sublinear and for all f in the appropriate spaces we have the weak type estimates that for all λ,

(Vλ(Tf) · λqi)1/qi ≤ Ai‖f‖pi

then for each 0 < θ < 1, setting 1
pθ

= θ · 1
p0

+ (1− θ) · 1
p1

and similarly for qθ, we have strong type estimates
of the form

‖Tf‖qθ .θ A
1−θ
0 Aθ1‖f‖pθ .

In other words, the space of estimates of the form ‖Tf‖q . ‖f‖p is convex in the (1/p, 1/q)-domain, and
in order to interpolate, one only needs weak estimates at the boundary.
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Question 3. Here’s a challenge. Suppose we are given (p0, q0), (p1, q1) as in the hypotheses of the theorem.
Is there a sublinear operator T such that ‖Tf‖q . ‖f‖p if and only if (p, q) lie in the interpolating interval
between these two endpoints? How about if we choose any convex subset of the (1/p, 1/q)-domain?

Remark 20. If T is the Fourier transform on Rd, then we have strong estimates on L2 by Plancherel (in fact
equality) and L∞ by the triangle inequality. Hence, we get strong estimates by interpolation of the form

‖f̂‖Lq . ‖f‖Lp

with 1
p + 1

q = 1. In fact, these are the only such estimates for the Fourier transform.
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