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Today, we’re starting the second unit in this course, which will be Fourier analysis. As an example
of how Fourier analysis can be used to solve problems that a priori don’t seem to be related to
Fourier analysis, let us consider the Gauss circle problem. This problem asks us to estimate
how many integer lattice points there are in a disk of radius R in R2. More formally, let

N(R) := #{(x, y) : x, y ∈ Z, (x, y) ∈ B2
R}.

Then, a reasonable estimate for N(R) is πR2, the area of the circle of radius R. The error of this
estimate is

E(R) := N(R)− πR2

and what we are interested in is a bound for |E(R)|.

First, let us show that we can find some bound for |E(R)|.

Proposition 1. |E(R)| ≤ 100R.

Proof. For every v ∈ Z2, let Qv be the unit squre in R2 centered at v.

0

v
Qv

Now,

N(R) =
∑
v∈Z2

χBR
(v)

πR2 =
∑
v∈Z2

Area(Qv ∩BR)

E(R) = N(R)− πR2 =
∑
v∈Z2

(χBR
(v)−Area(Qv ∩BR)).
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But then,
|E(R)| ≤ #{v : Qv ∩ ∂BR 6= ∅} ≤ #{v : Qv ⊂ BR+3\BR−3}.

But we could also have cancellation of overestimates and underestimates so it is reasonable to
expect that we could get better than a linear bound. For example, in the following picture, the
contribution to E(R) from the shaded box is positive while the contribution from the unshaded
boxes is negative. Perhaps we could exploit this cancellation.

To get some idea of what bounds on |E(R)| we might expect to be possible, let us consider a random
model. In this random model, xj ∈ [0, 1] are uniformly distributed and independent, j = 1, 2, . . . , N
(N ∼ R). This represents the contribution to E(R) of each lattice point where the contribution is
nonzero (the points in a distance

√
2/2 neighborhood of the circle of radius R).

Proposition 2. E|
∑N

j=1 xj | ≤ CN1/2.

Proof.

LHS = −
ˆ
[−1,1]N

∣∣∣∣∣∣
N∑
j=1

xj

∣∣∣∣∣∣ dx ≤
−ˆ

 N∑
j=1

xj

2

dx

1/2

=

∑
j1,j2

−
ˆ
xj1xj2 dx

1/2

=

 N∑
j=1

−
ˆ
|xj |2 dx

1/2

. N1/2.

Here, we’re using Cauchy Schwarz in the first line and the orthogonality of the xj to get the third
line.

The conjecture then is that for all ε > 0, there exists Cε such that |E(R)| ≤ Cε ·R
1
2
+ε. What we will

prove using tools from Fourier analysis is the following estimate, which is attributed to Sierpinski:
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Theorem 3.
|E(R)| . R2/3.

The best current bound of the form |E(R)| . Rc is for c = 131/208 ≈ 0.63, proven by Huxley in
the early 2000s.

Let us now discuss the Fourier analysis setup in preparation for proving theorem 3. Let

f = χB2
R
.

And for any g ∈ L1(Rd), define the periodization

Pg(x) =
∑
v∈Zd

g(x+ v).

Then, N(R) = Pf(0). If g is a Zd periodic function on Rd, then

ĝ(n) =

ˆ
[0,1]d

g(x)e−2πin·x dx.

We claim now that πR2 = P̂ f(0). This is a result of the Poisson summation formula:

Theorem 4 (Poisson summation formula). If f ∈ L1(Rd), n ∈ Zd, then

P̂ f(n) = f̂(n) =

ˆ
Rd

f(x)e−2πin·x dx.

Proof. We have that

P̂ f(n) =

ˆ
[0,1]d

Pf(x)e−2πin·x dx

=

ˆ
[0,1]d

∑
v∈Zd

f(x+ v)e−2πin·x dx

=
∑
v∈Zd

ˆ
[0,1]d

f(x+ v)e−2πin·x dx

=
∑
v∈Zd

ˆ
[0,1]d

f(x+ v)e−2πin·(x+v) dx,

since n ∈ Zd. So combining the sum and the integral, we have that

P̂ f(n) =

ˆ
Rd

f(x)e−2πin·x dx = f̂(n).
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Let us do some wishful thinking now. We could wish that

Pf(x) =
∑
n∈Z2

P̂ f(n)e2πin·x.

(But this does not converge pointwise). Then,

N(R) = Pf(0) = πR2 +
∑
n6=0

P̂ f(n)

and
|E(R)| ≤

∑
n∈Z2\{0}

|P̂ f(n)|.

Here, we could with that this is ≤ CεR
1
2
+ε (but unfortunately this sum happens to be infinite).

This leads us to the question of when does a Fourier series converge. We can begin to answer this
through the following sequence of three theorems, with the first leading to the second leading to
the third.

Theorem 5. If g ∈ L2([0, 1]d), then SNg → g in L2([0, 1]d). Here,

SN (g) =
∑
|n|≤N

ĝ(n)e2πinx.

Theorem 6. If g is Ck on Rd and Zd periodic, and k > n, then SNg → g uniformly on C0.

Theorem 7. If
∑

n |ĝ(n)| <∞, g ∈ C0, then SNg → g uniformy in C0.

We also have the following question: how can we estimate |ĝ(n)|?

Proposition 8. If g is Zd periodic, ‖g‖Ck ≤ B, then

|ĝ(n)| ≤ C(d, k)B · |n|−k.

Proof. We’ll integrate by parts k times. For a fixed n, we’ll integrate in xj where j is chosen so
that |nj | ≤ 1

d |n|. Doing this, we see that∣∣∣∣∣
ˆ
[0,1]d

g(x)e−2πin·x dx

∣∣∣∣∣ =

∣∣∣∣ˆ ∂jg ·
1

−2πinj
e2πin·x dx

∣∣∣∣
=

∣∣∣∣ˆ ∂kj g ·
1

(−2πinj)k
e2πin·x dx

∣∣∣∣
≤ |nj |k

ˆ
[0,1]d

|∂kj g|

. |n|−k‖∂kg‖C0 .
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As a related question, we might ask if we could have a bound like |ĝ(n)| . B|n|−α if g ∈ Cα.
Unfortunately, integration by parts doesn’t work as well here, but we could use another method.
Let us define gh(x) := g(x− h). Then, |g(x)− gh(x)| . hα. So,

|ĝ(n)− ĝh(n)| =
ˆ

(e−2πin·x − e−2πin·(x+h))g(x) dx

= (1− e−2πin·h)ĝ(n).

But we also have the bound that

|ĝ(n)− ĝh(n)| ≤
ˆ
[0,1]d

|g(x)− g(x+ h)| dx . hα.

Combining these, we have that

|ĝ(n)| ≤ |1− e−2πin·h|−1hα,

and we can optimize our choice of h to get the bounds that we want.

Perhaps we’re not satisfied by the integration by parts proof of the previous proposition and want a
way of visualizing why smoothness of the function g would lead to decay of the Fourier coefficients
ĝ(n). Let us consider a smooth, slowly varying function g in one dimension and a large n. Then,
just looking at the real part for visualization purposes, Re(g(x)e−2πinx) looks like a scaled cosine
function with some error. The “positive” and “negative” bumps then almost cancel and we would
expect more cancellation for larger n.

More formually, let us subdivide [0, 1] into intervals Ij of length 1/n. Then,

∣∣∣∣ˆ 1

0
g(x)e−2πin·x dx

∣∣∣∣ =

∣∣∣∣∣∣
∑
j

ˆ
Ij

(g(x)− g(xj))e
−2πin·x dx

∣∣∣∣∣∣
=
∑
j

ˆ
Ij

|g(x)− g(xj)| dx,

and if n is larger, then we can bound |g(x)− g(xj)| better.

Our next goal will be to estimate |P̂ f(n)|. Let us do the first step now. For f = χBR
,

|P̂ f(n)| =
∣∣∣∣ˆ
BR

e−2πin·x dx

∣∣∣∣
and by rotational invariance, we then have that

|P̂ f(n)| =
∣∣∣∣ˆ
BR

e−2πi|n|x1 dx1 dx2

∣∣∣∣ =

∣∣∣∣ˆ R

−R
2
√
R2 − x21e

−2πi|n|x1 dx1

∣∣∣∣ .
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