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——————————————————————————

Recall that last class we considered two different PDEs. The first was ∆u ± |∇u|2 = 0. For this
one, we have good global regularity and can solve the Dirichlet problem. The second PDE that we
considered was ∆u± |∇u|4 = 0. Solutions to this PDE do not have good regularity, and we cannot
solve the Dirichlet problem.

Let us think about the first PDE some more, and let us fix the sign as a plus:

∆u+ |∇u|2 = 0.

The key estimate that we will need to get good global regularity is the following:

Proposition 1 (Key Estimate). If u ∈ C2(Ω),∆u+ |∇u|2 = 0, u = ϕ on ∂Ω, then

‖∂noru‖C0(∂Ω) ≤ g(Ω, ‖ϕ‖C2(∂Ω)).

We note that an immediate consequence of this proposition is that

‖∆u‖C0(∂Ω) ≤ g(Ω, ‖ϕ‖C2(∂Ω)),

which is a step toward achieving some global regularity.

Last class, we started proving a comparison principle that will be useful in the proof of this propo-
sition. Let us recall where we were and finish the proof:

Proposition 2 (Comparison principle). If

Qu =
∑
i,j

aij(∇u)∂i∂ju+ b(∇u),

where aij is positive definite, and a, b are C1 functions of ∇u, then if u,w ∈ C2(Ω), u ≤ w on ∂Ω,
Qu ≥ Qw on Ω, then u ≤ w on Ω.

Proof. Last week, we proved the strict version (if Qu > Qw). Now suppose that we only had that
Qu ≥ Qw. We can define a function

uε := u+ εeMx1 − ε sup
z∈Ω
|εeMz1 |.
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Then, uε ≤ u ≤ w on ∂Ω. Furthermore, if we can show that for ε > 0 sufficiently small, Quε >
Qu ≥ Qw on Ω, by the strict case we would have that uε ≤ w on Ω and by taking ε→ 0, we would
have u ≤ w and we would be done.

To show that Quε > Qu, we can look at d
dεQuε. We have that

d

dε
Quε = a11(∇uε)∂1∂1(eMx1) + other terms.

The other terms are bounded by C(Ω, u, a, b)M as they are linear combinations of terms ∂ie
Mx1 .

The first term we can bound below by C̃(Ω, u, a, b)M2. So for M large enough and ε small enough,
we have that d

dεQuε > 0 and therefore Quε > Qu ≥ Qw.

From the comparison principle, we have a couple of easy corollaries:

Corollary 3 (Uniqueness). If u,w ∈ C2(Ω), Qu = Qw on Ω and u = w on ∂Ω, then u = w.

Proof. From the comparison principle, we know that u ≤ w and u ≥ w on Ω, so u = w.

Corollary 4 (Maximum principle). If u ∈ C2(Ω), Qu = 0, then maxΩ u ≤ max∂Ω u (and a similar
statement holds for the minimum.

Proof. Let w = max∂Ω u. This is a constant function, so Qw = 0 = Qu, which implies that
maxΩ u ≤ maxΩw = max∂Ω u. By setting w = min∂Ω u, we have the corresponding statement for
the minimum.

Now, let us work on the proof of the key estimate. We will approach it via the barrier method.
Suppose that ∆u+ |∇u|2 = 0 on Ω, u = ϕ on ∂Ω.

Let N be a distance D neighborhood of ∂Ω, for a D > 0 to be chosen later. Our aim is to construct
a function B : N → R such that

(i) B = ϕ on ∂Ω

(ii) B ≥ ‖ϕ‖C0 on the inner boundary

(iii) ∆B + |∇B|2 ≤ 0 on N

If we were able to construct such a function, then since by the maximum principle |u| ≤ ‖ϕ‖0 ≤ B
on the inner boundary and therefore all of ∂N , an application of the comparison principle gives
us that n ≤ B on N . Therefore, ∂noru ≤ ∂norB on ∂Ω. If we then replace u with −u, we can
repeat the same process to get a barrier B̃ ≥ −u, so −B̃ ≤ u, and ∂noru ≥ −∂norB̃. Since we
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will construct B and B̃ so that their derivatives are bounded by g(Ω, ‖ϕ‖C2), this shows us that
‖∂noru‖C0(∂Ω) ≤ g(Ω, ‖ϕ‖C2).

Let d(x) = dist(x, ∂Ω). From differential topology, we know that ifD is sufficiently small, dependent
on Ω, then d ∈ C∞(N) and |∇d| = 1. Now, we can extend ϕ to a function Φ : N → R where
‖Φ‖C2 ≤ C(Ω)‖ϕ‖C2 and ‖Φ‖C0 ≤ ‖ϕ‖C0 . We want to define B as

B(x) = Φ(x) + ψ(d(x)),

for some function ψ : [0, D]→ R. To ensure that B has the three properties listed above, we need
to impose some restrictions on ψ:

(i) ψ(0) = 0

(ii) ψ(D) ≥ 2‖ϕ‖C0

(iii) This one takes a bit of analysis/computation. We can see that

∇(ψ(d)) = ψ′ · ∇d
∆(ψ(d)) = div(ψ′ · ∇d) = ψ′′|∇d|2 + ψ′∇d.

Then, using that |∇d| = 1, we have that

∆B + |∇B|2 ≤ ∆Φ + ψ′′ + ψ′∆d+ 2|∇Φ|2 + 2|ψ′|2 ≤ ψ′′ +A+A|ψ′|2,

where A is a function of Ω and ‖ϕ‖C2 . So if we had that

ψ′′ ≤ −A−A|ψ′|2,

then we would have property (iii), ∆B + |∇B|2 ≤ 0 on N .

Let us now try to construct such a function ψ. We’re going to construct a function ψ such that
ψ(0) = 0, ψ′(0) = s, and ψ′′ = −A−A|ψ′|2. We can explicitly solve for such a function. Let y = ψ′.

Then, we want that y′ = −A−Ay2, or that y′

1+y2
= −A. Solving, we have that

arctan y(d) = −Ad+ arctan(s).

So, y(d) = tan(−Ad+ arctan(s)). Now, we can let

ψ(d) =

ˆ d

0
tan(−Ax+ arctan(s)) dx.

Since for s large, we can make arctan(s) arbitrarily close to π/2, where tan is infinite, we have that
for s large and D small, ψ and therefore B satisfies the three conditions.
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——————————–

Let us move on now to a brief discussion of the minimal surface equation, which our guest lecturer
Spencer Hughes will be talking about in the next couple of lectures.

Suppose that we have a function u : Ω→ R. Then, assuming sufficient regularity, we can find the
area of the graph of this function to be

A(u) =

ˆ
Ω

√
1 + |∇u|2.

Let us see what happens when we perturb the function u a little bit.

Lemma 5. If u ∈ C2(Ω), v ∈ C2(Ω), v = 0 on ∂Ω, then

d

dt
A(u+ tv)|t=0 = −

ˆ
Ω

(Mu) · v,

where M is some differential operator

A corollary of this lemma gives us a necessary condition for an area-minimizing function u with
given boundary conditions.

Corollary 6. If A(u) ≤ A(w) for all w ∈ C2(Ω), w = u on ∂Ω, then Mu = 0.

Now, let us prove this lemma:

Proof. Fix a v and let ut := u+ tv. Then, we have that

ˆ
Ω

d

dt
[(1 + |∇ut|2)1/2 =

ˆ
Ω

1

2
(1 + |∇ut|2)−1/2 · 2∇ut · ∇v.

At t = 0, this is equal to ˆ
Ω

∑
i

∂i((1 + |∇u|2)−1/2∂iu) · v.

This is of the form ∂i(aij∂ju), where aij = (1 + |∇u|2)−1/2δij . We can also rewrite in a form so
that we may use the comparison principle, aij(∇u)∂i∂ju+ b(∇u).
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