
Decoupling, Problem set 4

This is the last problem set for the class. We will focus on digesting the proof of the sharp
decoupling theorem (for the paraboloid).

When studying a complicated proof, it can be helpful to think about how it plays out in some
(fairly) simple examples. In the first problem, we will consider an important class of examples for
the decoupling problem.

1. We consider the decoupling problem for the paraboloid in n dimensions. Here is a class of
examples that we will analyze. To describe these examples, we will have to discuss caps of various
scales. We write θ1 for an R−1/2-cap, θ2 for an R−1/4-cap, etc.

Suppose that for each R1/2-cap θ1 in the paraboloid, fθ1 consists of W1 wave packets in the ball

BR, each with amplitude H1. Suppose also that there are V1 ∼W
n
n−1

1 R1/2-boxes Q1 in BR which
are each contained in one wave packet for every cap θ1. (Draw a picture of how this may occur. If
you’re latexing your solutions, you don’t have to turn the picture in if it’s not convenient.) Suppose
that ‖f‖p is dominated by the contribution from these V1 R

1/2-boxes.
Next, we look inside each box Q1 from the first paragraph. Suppose that inside each box Q1,

for each R1/4-cap θ2, fθ2 consists of W2 wave packets (of length R1/2 and radius R1/4), each

with amplitude H2. Suppose also that there are V2 ∼ W
n
n−1

2 R1/4-boxes Q2 ⊂ Q1 which are
each contained in one wave packet for every cap θ2. Suppose that ‖f‖Lp(Q1) is dominated by the

contribution from these V2 R
1/4 boxes Q2 ⊂ Q1, and so ‖f‖Lp is dominated by the contibutions of

these Q1Q2 R
1/4-boxes. (Draw a second picture showing the wave packets and boxes at the two

scales. Again, you don’t have to turn it in if it’s not convenient.)
We continue this way through s scales, where s ∼ log log r, so that the final caps θs have size

∼ 1 and the final boxes Qs have size around 1.

a.) Using local orthogonality, prove that

Hj . R
n−1

2j W
−1/2
j Hj−1.

b.) Next consider p = 2(n+1)
n−1 , the sharp exponent in decoupling, and estimate the decoupling

ratio

‖f‖Lp
(
∑
θ1
‖fθ1‖2Lp)1/2

.

Prove the bound

‖f‖Lp
(
∑
θ1
‖fθ1‖2Lp)1/2

. (logR)O(1)

(
W1

W2...Ws

) 1
2(n+1)

.

In particular, this shows that the decoupling ratio is . Rε whenever W1 ≤W2...Ws.

c.) Next we consider a different way of estimating this ratio. This time, we bring into play
decoupling of smaller caps, namely:

‖fθ2‖Lp . Dp(R
1/2)

( ∑
θ1⊂θ2

‖fθ1‖2Lp

)1/2

.
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Use this fact to estimate the ratio

(
∑
θ2
‖fθ2‖2Lp)1/2

(
∑
θ1
‖fθ1‖2Lp)1/2

.

Then use the method above to estimate the ratio

‖f‖Lp
(
∑
θ2
‖fθ2‖2Lp)1/2

.

Combining these estimates, prove the bound

‖f‖Lp
(
∑
θ1
‖fθ1‖2Lp)1/2

. (logR)O(1)Dp(R
1/2)

(
W2

W3...Ws

) 1
2(n+1)

.

Give an example (of W1,W2, ...Ws) when the bound from 1c is better than the bound from 1b,
and an example when the bound from 1b is better than the bound from 1c.

d.) By the same idea as in the proof of 1c., for any σ in the range 1 ≤ σ ≤ s, we can show that

‖f‖Lp
(
∑
θ1
‖fθ1‖2Lp)1/2

. (logR)O(1)Dp(R
1−21−σ )

(
Wσ

Wσ+1...Ws

) 1
2(n+1)

.

Show that for any ε > 0 and any fixed W1, ...,Ws, we can choose σ ≤ Cε−1 so that

‖f‖Lp
(
∑
θ1
‖fθ1‖2Lp)1/2

. Dp(R
1−21−σ )Rε2

1−σ
.

If Dp(R) was realized by a function f of the type considered in this question, we would get a
recursive inequality: for any ε > 0

Dp(R) . max
1≤σ≤Cε−1

Dp(R
1−21−σ )R2ε21−σ . (∗)

Note that (∗) implies that Dp(R) . R3ε.
This begs the question, is the ratio Dp(R) approximately realized by a function f of the type

considered in this question? What other kinds of functions could arise? What else could go wrong?
We will explore this some in Problem 2 and talk about it more in class.

2. Now we consider a generalization of the scenario from Problem 1.
a.) Suppose again that for each R1/2-cap θ1 in the paraboloid, fθ1 consists of W1 wave packets

in the ball BR, each with amplitude H1. Suppose now that there are V1 & W
n
n−1

1 R1/2-boxes Q1

in BR which make a dominant contribution to f . Suppose that V1 = (β1W1)
n
n−1 , and suppose that

each box Q1 is contained in a wave packet of fθ1 for a fraction 1/β1 of caps θ1.

And similarly, at smaller spatial scales, suppose that inside each box Qj−1, for each R2−j -cap θj ,

fθj consists of Wj wave packets (of length R21−j and radius R2−j ), each with amplitude Hj . And

suppose that there are Vj ∼ (βjWj)
n
n−1 boxes Qj ⊂ Qj−1 which each lie in a wave packet of fθj for

a fraction β−1j of caps θj .

Estimate the ratio ‖f‖Lp
(
∑
θ1
‖fθ1‖

2
Lp

)1/2
and show that it is smaller than the upper bounds given in

Problem 1.
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b.) Is it possible to arrange far more than W
n
n−1

1 cubes Q1 so that each cube Q1 lies in a wave
packet from each fθ1? Explain your answer.

c.) Suppose β1 is large. Is it possible to arrange far more than (β1W1)
n
n−1 cubes Q1 so that each

cube Q1 lies in a wave packet of fθ1 for at least a fraction (1/β1) of the caps θ1? You may not be
able to answer this question, but does it remind you of any other questions we have seen? If such
an arrangement is possible, can we say anything interesting/useful about it?

d.) In what other ways could a function f be different from the examples we have considered so
far? Pick out one or two issues that seem the most significant to you.

3. Last problem set, you wrote an outline of the proof of multilinear restriction. Read over your
outline, and then try to prove multilinear restriction following your outline. How did it go? Did
any tricky points come up when you tried to carry this out?

4. Write an outline of the proof of the decoupling theorem for the paraboloid for 2 ≤ p ≤ 2n
n−1

(the non-sharp decoupling theorem). The outline should be a few steps, mostly in words or short
equations. On the one hand, the outline should be a lot shorter than the whole proof. On the other
hand, you should try to include “the main ideas”. You might imagine that in a few weeks, you
would try to reconstruct the proof just based on this outline. What is the key information that you
should record for yourself?


