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Problem 1. Write an outline of the proof of multilinear restriction.

Proof. The statement is

‖
n∏
j=1

|fj |
1
n ‖Lpavg(BR) . Rε

n∏
j=1

‖fj‖
1
n

L2
avg(BR)

p =
2n

n− 1

where f =
∑n

j=1 fj , supp f̂j ⊂ N1/RΣj and Σj are hypersurfaces with normal
vector almost parallel to xj-axis.
Take p-th power on both sides and induction on scales. Tile BR using balls
of radius R1/2. The averaged integral over BR on the left hand side is
approximately the average over all balls of radius R1/2 in the tiling of the
averaged integral over one ball of radius R1/2. Suppose the statement is true
at scale R1/2, use local orthogonality and local constancy at scale R1/2, and
put everything back to integration over BR. Then use Multilinear Kakeya
and the reverse direction of local orthogonality.

Problem 2. Let ES denote the extension operator for the surface S ⊂ Rn,

ESφ(x) =

∫
S
e2πiω·xφ(ω) dvolS(ω).

Let ES,p(R) be the best constant in the inequality ‖ESφ‖Lp(BR) ≤ C‖φ‖Lp(S).
Let En,p(R) be the maximum of ES,p(R) over all S with diameter 1, C3-norm
at most 10 and principal curvatures between 1/10 and 10 (”well-curved”).
Suppose that S is well-curved in this sense and that τ ⊂ S is a K−1 cap.
Show that

‖Esφτ‖Lp(BR) ≤ C(n)En,p(
R

K
)K

2n
p
−(n−1)‖φτ‖Lp(S).

Proof. Let L be the linear change of variables that looks like stretching
ω1, ..., ωn−1 by K and stretching ωn by K2 (if S is a paraboloid, then L
maps τ to a paraboloid). Then L maps τ to a well-curved surface S′, and

c(n)Kn+1 ≤ |detL| ≤ C(n)Kn+1, (1)
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while restricting L on τ , the determinant ∼ Kn−1. We can do this because
the bounds of principal curvatures and C3 norm allow us to do second order
approximation of the surface locally. We have

ESφτ (x) =

∫
τ
e2πiω·xφ(ω) dvolSω

∼
∫
L(τ)

e2πiL−1ω′·xφ(L−1ω′)K−(n−1) dvolL(τ)ω
′

= K−(n−1)

∫
S′
e2πiω′·(L−1x)ψ(ω′) dvolS′ω

′

= K−(n−1)ES′ψ(L−1x)

where ψ(ω′) := φ(L−1ω′) and the ∼ is because of the inverse version of (1).
Hence, we have

‖ESφτ‖pLp(BR) = K−(n−1)p

∫
BR

|ES′ψ(L−1x)|p dx

= K−(n−1)p

∫
L−1(BR)

|ES′ψ(x′)|p|detL| dx′

∼ K−(n−1)p

∫
BR/K

|ES′ψ(x′)|pKn+1 dx′

=⇒ ‖ESφτ‖Lp(BR) ∼ K
n+1
p
−(n−1)‖ES′ψ‖Lp(BR/K)

≤ K
n+1
p
−(n−1)

En,p(
R

K
)‖ψ‖Lp(S′).

Also note that

‖ψ‖pLp(S′) =

∫
S′
|ψ(ω)|p dvolS′ω

=

∫
L(τ)
|φ(L−1ω)|p dvolL(τ)ω

∼
∫
τ
|φ(ω′)|pKn−1 dvolτω

′

=⇒ ‖ψ‖Lp(S′) ∼ K
n−1
p ‖φτ‖Lp(S).

Putting things together, we have

‖ESφτ‖Lp(BR) ≤ C(n)K
n+1
p
−(n−1)

En,p(
R

K
)K

n−1
p ‖φτ‖Lp(S)

≤ C(n)K
2n
p
−(n−1)

En,p(
R

K
)‖φτ‖Lp(S)
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Problem 3. Let MEn,p(R) denote the best constant so that

∥∥∥ n∏
j=1

|ESjφj |
1
n

∥∥∥
Lp(BR)

≤ C
n∏
j=1

‖φj‖
1
n

Lp(Sj)

whenever Sj are surfaces with diameter at most 1, C3-norm at most 10, and
normal vector almost parallel to the xj-direction. Show that when n = 3,

E3,p(R) . KO(1)ME3,p(R) +D2,p(K
2)E3,p(

R

K
)K

5
p
− 3

2 . (2)

We know from class that D2,p(K
2) . Kε for 2 ≤ p ≤ 4. The multilinear

restriction theorem leads directly to good bounds for MEn,p(R). Using these
facts and equation (2), prove that E3,p(R) . Rε for p ≥ 10/3.

Proof. We partition S into K−1-caps τ so there are ∼ K such τ ’s, and tile
BR with balls of radius K2. Define significant part S(BK2), ”broad” and
”narrow” balls of radius K2 as in the lecture. We need to show that

‖ESφ‖Lp(BR) .
(
KO(1)ME3,p(R) +D2,p(K

2)E3,p(
R

K
)K

5
p
− 3

2

)
‖φ‖Lp(S)

for all well-curved S ⊂ R3. We separate the broad part and narrow part,

‖ESφ‖Lp(BR)

.
( ∑
BK2⊂BR

broad

∫
BK2

|ESφ(x)|p dx
) 1
p

+
( ∑
BK2⊂BR

narrow

∫
BK2

|ESφ(x)|p dx
) 1
p

=‖broad part‖Lp(BR) + ‖narrow part‖Lp(BR)

by triangle inequality (. is because this is not a perfect tiling but the error
is small).
Narrow estimate: if BK2 is narrow, then there exists a hyperplane Π∗ such
that ∀ τ ∈ S(BK2), Angle(nor(τ),Π∗) . K−1.∑

BK2⊂BR
narrow

∫
BK2

|ESφ(x)|p dx ∼
∑

BK2⊂BR
narrow

∫
BK2

∣∣ ∑
τ∈S(BK2 )

ESφτ (x)
∣∣p dx

For a single narrow BK2 , rotate the coordinate axes if necessary so that
nor(τ) almost parallel to the 3rd direction for each τ ∈ S(BK2). By Fubini’s
theorem,∫

BK2

∣∣ ∑
τ∈S(BK2 )

ESφτ (x)
∣∣p dx =

∫ K2

−K2

‖
∑

τ∈S(BK2 )

ESφτ (x′, t)‖pLp(BK2∩Πt)
dt
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By giving S a parametrization, for fixed t, as a function of x′ ∈ R2, ESφτ (x′, t)
is the Fourier inverse of some function that have compact support in R2, and
since S is well-behaved we can assume that support is also well-behaved so
that Decoupling theorem can be applied. By the lemma in the lecture pre-
ceding the narrow estimate,∫

BK2

∣∣ ∑
τ∈S(BK2 )

ESφτ (x)
∣∣p dx

.
∫
R
D2,p(K

2)p
( ∑
τ∈S(BK2 )

‖ESφτ‖2Lp(BK∩Πt)

) p
2
dt drop the weight

≤D2,p(K
2)p
∫
R

([ ∑
τ∈S(BK2 )

‖ESφτ‖
2· p

2

Lp(BK∩Πt)

] 2
p
[ ∑
τ∈S(BK2 )

1
]1− 2

p

) p
2
dt

.D2,p(K
2)p
∫
R

∑
τ

‖ESφτ‖pLp(BK2∩Πt)
K

p
2
−1 dt.

The ≤ in the thid line is due to Hölder’s inequality. Summing over all
BK2 ⊂ BR, we have∑
BK2⊂BR

narrow

∫
BK2

|ESφ(x)|p dx . D2,p(K
2)pK

p
2
−1
∑
τ

∫
R
‖ESφτ‖pLp(BR∩Πt)

dt

= D2,p(K
2)pK

p
2
−1
∑
τ

‖ESφτ‖pLp(BR)

. D2,p(K
2)pK

p
2
−1Ep3,pK

( 6
p
−2)p

∑
τ

‖φτ‖pLp(S)

= D2,p(K
2)pK5− 3p

2 ‖φ‖pLp(S)

Taking p-th root on both sides, we get

‖narrow part‖Lp(BR) . D2,p(K
2)K

5
p
− 3

2 ‖φ‖Lp(S)

which is what we want.
Broad estimate: imitate the random translation technique given in the lec-
ture. Define gv(x) := g(x− v), and for v1, ..., vn ∈ BK2 broad, if τ1, ..., τn ∈
S(BK2), then similar to the lecture

‖ESφ‖pLp(BK2 ) . KO(1)Ev
[∥∥ n∏

j=1

|ESφ
vj
τj |

1
n

∥∥p
Lp(BK2 )

]
.

This is because when restricted on a hyperplane in R3, ESφ and ESφτ can
be regarded as the Fourier inverse of some function on R2, and translation
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is well-behaved in the sense that they preserve Fourier support, commute
with projections and preserve Lp-norms under this setting. Hence∑

BK2⊂BR
broad

∫
BK2

|ESφ(x)|p dx

.KO(1)Ev
[ ∑
BK2⊂BR

broad

∥∥ ∏
τ1,τ2,τ3∈S(BK2 )

transverse

|ESφ
vj
τj |

1
3

∥∥p
Lp(BK2 )

]

.KO(1)Ev
[ ∑
τ1,τ2,τ3

∑
BK2⊂BR

∥∥ 3∏
j=1

|ESφ
vj
τj |

1
3

∥∥p
Lp(BK2 )

]

.KO(1)Ev
[ ∑
τ1,τ2,τ3

∥∥ 3∏
j=1

|ESφ
vj
τj |

1
3

∥∥p
Lp(BR)

]
For the second ., the power O(1) maybe bigger than the last one since there
can be double counting of the τ ’s. We can take a linear change of variables
that maps τj to Sj which satisfy the condition of multilinear extension. As
we have seen in Problem 2 and the bound of the jacobian in the definition
of transversality, the difference is a factor KO(1). Hence,∑

BK2⊂BR
broad

∫
BK2

|ESφ(x)|p dx . KO(1)Ev
[ ∑
τ1,τ2,τ3

MEp3,p(R)
3∏
j=1

‖φτj‖
p
3

Lp(S)

]

. KO(1)MEp3,p(R)
∑

τ1,τ2,τ3

3∏
j=1

‖φτj‖
p
3

Lp(S)

. KO(1)MEp3,p(R)
∑

τ1,τ2,τ3

∑3
j=1 ‖φτj‖

p
Lp(S)

3

. KO(1)MEp3,p(R)
∑
τ

‖φτ‖pLp(S)

= KO(1)MEp3,p(R)‖φ‖pLp(S)

Taking p-th root on both sides, we get

‖narrow part‖Lp(BR) . KO(1)ME3,p(R)‖φ‖Lp(S).

Therefore,

E3,p(R) . KO(1)ME3,p(R) +D2,p(K
2)E3,p(

R

K
)K

5
p
− 3

2 .

For the second part, choose K = logR and do induction on scales. Suppose
E3,p(

R
K ) . (R/K)ε. Multilinear restriction theorem says∥∥∥ 3∏

j=1

|ESjφj |
1
3

∥∥∥
L3(BR)

. Rε
3∏
j=1

‖φj‖
1
3

L2(Sj)
.

5



Since diam(Sj) ≤ 1, we also have

‖ESjφj‖L∞(BR) ≤
∫
Sj

|φj(ω)| dvolSjω . ‖φj‖L∞(Sj)

so

∥∥ 3∏
j=1

|ESjφj |
1
3

∥∥
L∞(BR)

≤
3∏
j=1

‖φj‖
1
3

L∞(Sj)
.

By interpolation, we have

∥∥ 3∏
j=1

|ESjφj |
1
3

∥∥
Lp(BR)

≤
3∏
j=1

‖φj‖
1
3

Lp(Sj)
∀ 3 ≤ p ≤ ∞,

in particular, ME3,p(R) . Rε for p ≥ 10/3. We know that D2,p(K
) . Kε

and K = logR . Rε. Plug in everything, we have

E3,p(R) . KO(1)Rε
′
+Kε(

R

K
)ε
′′
K

5
p
− 3

2

. Rε +Rε
′
. Rε

Discussion. For p ≥ 10/3, we have

E3,p(R) . KO(1)ME3,p(R) +KεE3,p(
R

K
).

It’s important to treat the powers of K in the two summands, namely O(1)
and ε differently, because we need to iterate the one on the left. To see this,
consider too models:

(1) Ep(R) ≤ K100MEp(R) ≤ K100Rε, and we can choose K = logR;

(2) Ep(R) ≤ KαEp(R/K) ≤ K2αEp(R/K
2) ≤ · · · ≤ RαEp(1) . Rα.

Returning to our case, let s := logK/ logR, i.e. Ks = R, then

Ep(R) ≤ CKO(1)MEp(R) + CεK
εEp(

R

K
)

≤ CKO(1)MEp(R) + CεK
εCKO(1)ME(

R

K
) + C2

εK
2εEp(

R

K2
)

≤ · · · (repeat s times)

≤ CKO(1)MEp(R) + · · ·+ CsεR
εEp(1).

Since Csε = RlogCε/ logK , the last term requires that K → ∞ as R → ∞,
while the first term requires K . Rε. Clearly K = logR works.
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Problem 4. Suppose that we decompose Sn−1 into L−1-caps θ. For each
cap θ, suppose that Tθ is the characteristic function of a tube of length L
and radius 1 in Rn in the direction. Let f =

∑
θ Tθ. Prove the Kakeya

maximal function conjecture for dimension n = 4

‖f‖Lp(Rn) . L3 for p >
4 + 2

4
=

3

2
.

Proof. Divide S3 into larger caps τ of diameter K−1 where K << R is still
a big number (we will choose K = logR later), and write f =

∑
τ fτ where

fτ =
∑

θ⊂τ Tθ. There are ∼ Kn−1 such τ ’s. Tile R4 using balls of radius K2

(I choose K2 because I want to imitate the random translation). For each
BK2 , define the significant set

S(BK2) := {τ : ‖fτ‖Lp(BK2 ) ≥
1

100#τ
‖f‖Lp(BK2 )}.

We say a ball BK2 is 3-broad if ∃ τ1, τ2, τ3 ∈ S(BK2) that are 3-transverse,
and 3-narrow otherwise. Another way of seeing the 3-narrowness is that
there exists a 2-dimensional plane Π such that nor(τ) lie in a 1/K-neighbourhood
of Π for all τ ∈ S(Q). Write Broad=∪3−broadBK2 and Narrow=∪3−narrowBK2 .
Since ‖f‖L∞(R4) ≤ L3, we can do interpolation if we can prove the p = 3/2
case.
Broad estimate: use 3-linear Kakeya.

‖f‖
3
2

L
3
2 (Broad)

∼
∑

BK2 broad

∫
BK2

|
∑

τ∈S(BK2 )

fτ |
3
2

. KO(1)
∑

BK2 broad

Ev
[ ∫

BK2

3∏
j=1

|fτj(BK2 ),vj |
1
3
· 3
2

]
where τj(BK2) ∈ S(BK2), j = 1, 2, 3 are 3-transverse and vj ∈ BK2 . This
is similar to the random translation technique introduced in class. Here we
don’t even need to consider its effect on the frequency domain, which makes
it much easier. So by adding the O(1) if necessary, we have

‖f‖
3
2

L
3
2 (Broad)

. KO(1)
∑

(τ1,τ2,τ3)
3-transverse

Ev
[∑
BK2

∫
BK2

3∏
j=1

|fτj ,vj |
1
2

]
.

We can translate the tubes to fit them into a ball of radius LO(1) (I think L4

should work) without changing the overlap and so are the random translates.
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Hence,

‖f‖
3
2

L
3
2 (Broad)

. KO(1)
∑

(τ1,τ2,τ3)
3-transverse

Ev
[ ∫

BL4

3∏
j=1

|fτj ,vj |
1
2

]

. KO(1)
∑

(τ1,τ2,τ3)

L4ε(
L

K
)3· 1

2
·3 #θ ⊂ τ ∼ (

L

K
)3

. KO(1)− 9
2Lε+

9
2

Hence ‖f‖
L

3
2 (Broad)

. KO(1)Lε+3 . Lε+3 if we take K = logK . Lε.

Narrow estimate: use induction on scale, i.e. suppose ‖g‖
L

3
2 (R4)

. (L/K)3+ε

where g is the sum of characteristic functions of tubes of length L/K, radius
1 and directions form a K/L-net on S3. Then

‖f‖
3
2

L
3
2 (Narrow)

∼
∑

BK2 narrow

∫
BK2

|
∑

τ∈S(BK2 )

fτ |
3
2

≤
∑

BK2 narrow

∫
BK2

∑
τ∈S(BK2 )

|fτ |
3
2 |S(BK2)|

3
2
−1

by Hölder’s inequality, where |S(BK2)| is the cardinality of this set. Since all
the significant τ ’s lie in a 1/K neighbourhood of S1, |S(BK2)| . K. Hence

‖f‖
3
2

L
3
2 (Narrow)

. K
1
2

∑
BK2 narrow

∫
BK2

∑
τ∈S(BK2 )

|fτ |
3
2

≤ K
1
2

∑
BK2 narrow

∫
BK2

∑
τ

|fτ |
3
2

= K
1
2

∑
τ

∫
R4

|fτ |
3
2

For each τ , we need to take a change of variables A so that a 1/L-net of
a K−1-cap τ maps to a K/L-net of the entire S3 and the length of the
corresponding tubes becomes L/K. Choose a coordinate system such that
the x1-axis points to the direction of τ and the others are orthogonal to it.
Let A scales 1/K in x1-axis and keep the other axes unchanged. Then the
length of tubes becomes L/K and the angle between each two shorter tubes
are 1/K times the previous. So |det(A)| ∼ K. Thus,∫

R4

|fτ |
3
2 =

∫
R4

|fτ ◦A|
3
2 |det(A)| ∼

∫
R4

|gτ |
3
2K . K(

L

K
)
3
2

(3+ε)

Plug it into the previous estimate,

‖f‖
3
2

L
3
2 (Narrow)

. K
1
2K3K(

L

K
)
3
2

(3+ε) #τ ∼ K

= L
3
2

(3+ε)K−
3
2
ε ≤ L

3
2

(3+ε)
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Putting the broad part and narrow part together, we have

‖f‖
L

3
2 (R4)

≤ ‖f‖
L

3
2 (Broad)

+ ‖f‖
L

3
2 (Narrow)

. L3+ε

Discussion. We tile R4 by balls of radius r, and we can choose r as small
as we like. In fact, it will be easier if we define broad and narrow points.
In my original solution I asked why we need to use the fact that #τ ∈
S(B) ∼ K, why the Jacobian of the linear change of variables matters, and
why we can afford to have KO(1) in the broad part but have to be careful
about the exponent of K in the narrow part. Larry says that it has to do
with induction. Let Cp(L) :=best constant such that ‖f‖Lp ≤ CL3. We have
an iterative inequality of the form

Cp(L) ≤ cKO(1)Lε + c′KαCp(
L

K
).

We were careful to make exponent α arbitrarily small. The first term is
final, but to understand the second term we need to iterate. Suppose there
was only a second term:

Cp(L) ≤ KαCp(
L

K
) ≤ K2αCp(

L

K2
) ≤ · · · ≤ LαCp(1) = Lα.

The final question is: what is different about restriction? In other words,
why the choice of radius of smaller balls matters in restriction? Paul points
out that the use of local orthogonality (which occurs implicitly in decoupling
at a lower dimension) requires a ball of certain radius, and we need local
orthogonality to take care of cancellation. For Kakeya problem, fτ ≥ 0 so
there’s no cancellation.
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