
Decoupling, Problem set 3

1. Write an outline of the proof of multilinear restriction. The outline should be a few steps,
mostly in words or short equations. On the one hand, the outline should be a lot shorter than the
whole proof. On the other hand, you should try to include “the main ideas”. You might imagine
that in a few weeks, you would try to reconstruct the proof just based on this outline. What is the
key information that you should record for yourself?

In the rest of this problem set, we explore the broad/narrow decomposition, and its applications.

2. A rescaling argument. In order to use the broad/narrow approach to study restriction, there
is a simple rescaling argument that we will need, and we work it out in this problem.

Let ES denote the extension operator for the surface S ⊂ Rn.

ESφ(x) =

∫
S

e2πiωxφ(ω)dvolS(ω).

Let ES,p(R) be the best constant in the inequality

‖ESφ‖Lp(BR) ≤ C‖φ‖Lp(S).

Let En,p(R) be the maximum of ES,p(R) over all “well-curved” choices of S: all S with diameter
1, C3 norm at most 10, and principal curvatures pinched between 1/10 and 10.

Suppose that S is well-curved in this sense and that τ ⊂ S is a K−1 cap. Show that

‖ESφτ‖Lp(BR) ≤ C(n) En,p(R/K)K
2n
p −(n−1)‖φτ‖Lp(S).

The idea is to change variables so that the small cap τ is transformed into a new surface S′

obeying the same assumptions as the original surface. Unwinding all the Jacobians from this
change of variables leads to the powers of K on the right-hand side.

You don’t have to be too careful/rigorous about checking that S′ has the desired geometric
properties. If you like, you can just work with the case that S is the paraboloid, and then S′ will
also be a paraboloid.

3. We use the broad/narrow strategy to relate the restriction problem to multilinear restriction.
Let MEn,p(R) denote the best constant so that∥∥∥∥∥∥

n∏
j=1

|ESj
φj |1/n

∥∥∥∥∥∥
Lp(BR)

≤ C
n∏
j=1

‖φj‖Lp(Sj),

whenever Sj are surfaces with diameter at most 1, C3 norm at most 10, and normal vector almost
parallel to the xj-direction.

Show that when n = 3

E3,p(R) . KO(1) ME3,p(R) + D2,p(K
2) E3,p(R/K)K

5
p−

3
2 . (∗)

(It is not any harder to do the n-dimensional case, but the exponents are a little bit messy.)
We know from class that D2,p(K

2) . Kε for 2 ≤ p ≤ 4. The multilinear restriction theorem leads
directly to good bounds for MEn,p(R). Using these facts and equation (∗), prove that E3,p(R) . Rε

for p ≥ 10/3.
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History. Tomas-Stein proved in the 70s that in dimension n = 3, ‖ESf‖L4(R3) . ‖f‖L2(S)

when S is the 2-sphere. Strichartz generalized the estimate to the paraboloid in connection with
studying the Schodinger equation giving the bound E3,p . 1 for p ≥ 4. People were stuck on
the problem for a significant time until Bourgain proved that E3,p . 1 for p > 3 7

8 in 1991 (in
“Besicovitch type maximal operators and applications to Fourier analysis”). In that paper, he first
made progress on the Kakeya conjecture and then showed how to transfer progress on Kakeya into
progress on restriction by using wave packets and multiscale analysis. There were a sequence of
small improvements by many authors until 2001 or so, when a new method introduced by Wolff
and Tao proved that E3,p . 1 for p > 10/3. This bound was a big improvement over the best
previous result, and it stood as the best known estimate for almost a decade. The approach using
broad/narrow comes from a paper by Bourgain and me around 2010. The bound of 10/3 has been
improved a little (by Bourgain and then by me) but it is still nearly state of the art.

It is worth knowing that there is an ε-removal theorem in the subject, which says that if En,p(R) .
Rε, then En,q(R) . 1 for all q > p – cf. T. Tao, “The Bochner-Riesz conjecture implies the
restriction conjecture”. So the bound proven in this problem actually implies that E3,p(R) . 1,
matching the bound of Wolff-Tao.

4. In this problem, we use the broad-narrow decomposition to study the Kakeya problem. Sup-
pose that we decompose Sn−1 into L−1-caps θ. For each cap θ, suppose that Tθ is the characteristic
function of a tube of length L and radius 1 in Rn in the direction θ. One form of the Kakeya
conjecture is an Lp estimate for the sum of the Tθ.

Conjecture 1. (Kakeya maximal function conjecture) If f =
∑
θ Tθ, then

‖f‖Lp(Rn) . Ln−1 for p >
n

n− 1
.

This estimate is sharp in the example where all the tubes go through the origin. The estimate
is trivial for p = +∞ because the number of caps θ is ∼ Ln−1. It gets harder as p gets smaller.
We will focus on dimension n = 4 where the broad-narrow method gives an alternate proof of very
nearly the best known estimate. This estimate was proven by Tom Wolff in 1995:

Theorem 1. (Wolff) Conjecture 1 holds for p ≥ n+2
n .

For dimension n = 4, we will prove that Conjecture 1 holds for p > 4+2
4 = 3/2.

The proof uses triliear Kakeya in R4. We recall the statement from last problem set. Suppose
that Tj,θ are characteristic functions of radius 1 tubes in Rn that are approximately parallel to the
xj-axis. Suppose that fj =

∑
θ Tj,θ, and suppose that there are Nj different Tj,θ in the sum.

Theorem 2. (k-linear Kakeya in Rn) If QS denotes a cube of side length S in Rn, then∫
QS

k∏
j=1

f
1

k−1

j . Sε
k∏
j=1

N
1

k−1

j .

To get estimates towards Conjecture 1 in dimension 4, divide S3 into larger caps τ , and write
f =

∑
τ fτ , where fτ =

∑
θ⊂τ Tθ. Then divide R4 into “3-broad” and “3-narrow” parts, where the

3-broad part is designed so that you can bound ‖f‖Lp(Broad) using 3-linear Kakeya. You will have
to bound the narrow parts using induction.

If you’re interested, you can also explore what happens in other dimensions. Can you recover
Wolff’s bound in any other dimension? For a given dimension n, we have to choose which k to
make use of in the k-linear Kakeya. What is is the most efficient choice?


