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Problem1

We shall start by reformulating the problem. Denote by δSn−1 the
delta function that is evenly distributed at the (n−1) dimensional unit
sphere. As a temporal distribution, its action on a Schwartz function
is given by

δSn−1(ψ) =

ˆ
Sn−1

ψ(ω)dvolSn−1

Similarly, we can define the unevenly distributed delta function φδSn−1

where φ(ω) ∈ C∞(Sn−1) is the weight function. As a temporal distri-
bution, its action is defined as

φδSn−1(ψ) =

ˆ
Sn−1

ψ(ω)φ(ω)dvolSn−1

The goal of study is to understand the inverse Fourier transformation
of φδ.

We need to show for certain p and each n > 0 we can find some
continous functions φn ∈ C 0(Sn−1) such that

‖Eφn‖Lp ≥ n‖φn‖∞

We can strengthen this goal a little bit and try to prove for someM > 0,

‖Eφn‖Lp(BM ) ≥ n‖φn‖∞

In what follows, we will take M = R and construct a function φR
such that

‖EφR‖Lp(BR) ≥ Rγ′‖φR‖∞
for some γ′ > 0.

From now on, we will focus on the construction of φR.
Take L = R

1
2 and choose an 1/L−separated 10/L−net on Sn−1. We

use ω1, · · · , ωm to record their directions. For each direction ωi, let θi
be a 1/L−cap on Sn−1 centered at ωi. Since the net is 1/L−separated,
these caps are disjoint. For each θi, we choose a smooth bump function
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fθi that is 1 almost on the whole cap θi and vanishes outside. The
function to be considered has the form

φR =
∑
θ

fθie
−iωi·xi

Each φ̂θ = fθ(ω)eiωi·xi is supported at a n−dim cap θ′i of size R−1 ×
R−

1
2 × · · ·R− 1

2 and its inverse Fourier transform concentrates on the
translated dual rectangle θ∗i +xi. This dual rectangle has size R×R 1

2 ×
R

1
2 × · · ·R 1

2 with direction ωi
Now by the counterexample of Kakeya problem, we can choose the

net and xi carefully, such that

|Ω| = | ∪i (θ∗i + xi)| ≤ CLγR
n
2 . R

n+γ
2

The second factor comes from rescaling the picture. Now to estimate
‖EφR‖Lp(BR), we proceed as follows and keep in mind that energy is
concentrated on Ω,

‖EφR‖pLp(BR) ≥ ‖EφR‖pLp(Ω)

(we assume Ω ⊂ BR)

≥ ‖EφR‖pL2(Ω)|Ω|
1− p

2

(Holder Inequality)

& ‖EφR‖pL2(BR)|Ω|
1− p

2

(Because energy concentrates)

At the last step, we replace the region Ω by BR. It’s tempting to
replace it by the whole space Rn and use Plancherel’s identity. Since
φRδSn−1 is not an L2 function at all, this attempt won’t work. The
lesson is even though the energy concentrates, you still get a divergent
term if integrating over a non-compact region. Thus, it is only feasible
to estimate over BR.

To do this, we need a cut off function. Choose a positive bump
function η̂ supported on B1 with integral

´
Rn η = 1. We require η̂ ≡ 1

on B1/2. Then its inverse Fourier transformation η is almost a bump
function of height 1 on B1. Now consider ηR = η( ·

R
) and η̂R = 1

Rn
η̂( ·

R
).

Now

‖EφR‖L2(BR) ∼ ‖ηREφR‖L2(Rn) = ‖δSn−1φ ∗ η̂R‖L2(Rn)

We need to understand the last convolution. It is a smooth bump
function convolved with a tempered distribution. The claim is that it
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is a smooth function supported in R−1 neighborhood of the sphere with
height R. To be specific, we write down the expression,

δSn−1φR ∗ η̂R(ξ) =

ˆ
Sn−1

φR(ω)η̂R(ξ − ω)dω

If ξ is out of 1/R neighborhood of the unit sphere, then the integral
is simply zero. If it is within 1/2R neighborhood and ξ is near the
support of a cap θ (then this θ is unique by separateness), then the
integral is taken over Sn−1 ∩B1/R(ξ) whose (n− 1) dimensional area is

roughly R−(n−1). On that region, η̂R has height Rn and φR is constant.
This shows the outcome is roughly R.

Finally, to compute the L2 norm, since the domain is of size R−1

while the height is roughly R, the result is R1/2. Now combining all
these together, we have,

‖EφR‖Lp(BR) ≥ R
1
2 |Ω|

1
p
− 1

2 & R
1
2

+( 1
p
− 1

2
)( γ

2
+n

2
)

The condition γ′ = 1
2

+ (1
p
− 1

2
)(γ

2
+ n

2
) > 0 gives

(
2n

n− 1
<) p <

2(n+ γ)

(n+ γ)− 2

Problem2

We shall use induction on n, the dimension of ambient Euclidean
space and each time try to reduce it by one until it reaches k, the num-
ber of different directions.

Suppose the directions are along the first k coordinates, say x1, · · · , xk.
Consider the projection Π : Rn → Rn−1, which forgets the last com-
ponent. Let Q′S be the image of QS under Π and that is a (n − 1)
dimensional cube of side length S. Let l′j,a be the image of lj,a and T ′j,a
be the characteristic function of the 1-neighborhood of l′j,a. We shall
prove

ˆ
QS

k∏
j=1

(

Nj∑
a=1

Tj,a)
1

k−1 .
ˆ
Q′S

k∏
j=1

(

Nj∑
a=1

T ′j,a)
1

k−1

To do this, the first step is to use Fubini’s theorem and rewrite LHS
as ˆ

QS

k∏
j=1

(

Nj∑
a=1

Tj,a)
1

k−1 =

ˆ
Q′S

ˆ
[−S,S]

k∏
j=1

(

Nj∑
a=1

Tj,a)
1

k−1
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It’s enough to show,

ˆ
[−S,S]

Πk
j=1(

Nj∑
a=1

Tj,a)
1

k−1 ≤ Πk
j=1(

Nj∑
a=1

T ′j,a)
1

k−1

for any x′ = (x′1, · · · , x′n−1) ∈ Rn. From now on, we regard Tj,a as a
function on {x′} × [−S, S]. If Tj,a is identically zero, then T ′j,a(x

′) = 0.
But even though it is not zero, it is a characteristic function of compact
interval of length . 2. This is because {x′}×[−S, S] and lj,a are almost
perpendicular to each other and 1-neighborhood of lj,a has diameter 2.
Now by Holder inequality,

ˆ
[−S,S]

Πk
j=1(

Nj∑
a=1

Tj,a)
1

k−1 ≤ Πk
j=1(

ˆ
[−S,S]

(

Nj∑
a=1

Tj,a)
k/(k−1))1/k

and it suffices to show
ˆ

[−S,S]

(

Nj∑
a=1

Tj,a)
k/(k−1) ≤ (

Nj∑
a=1

T ′j,a)
k/(k−1)

WLOG, we assume each T ′j,a on RHS is not zero, otherwise we can
simply discard that term.

Again by Holder inequality, we can use L1 and L∞ norm to control
LHS,

‖
Nj∑
a=1

Tj,a‖Lk/(k−1)([−S,S]) ≤ ‖
Nj∑
a=1

Tj,a‖(k−1)/k
1 ‖

Nj∑
a=1

Tj,a‖1/k
∞

Since each Tj,a ≤ 1, ‖
∑Nj

a=1 Tj,a‖∞ ≤ Nj. Also, since
´

[−S,S]
Tj,a ≤ 2,

‖
∑Nj

a=1 Tj,a‖1 ≤ 2Nj. Therefore, RHS. Nj. This completes the induc-
tion step. Finally, we use multi-linear Kekaya theorem in dimension k
to conclude.

The last step is not very enlightening, though it is valid as a proof.
The picture is along {x′}×R, these tubes may intersects at m different
points and for each m, there are Nm,1, · · · , Nm,k tubes coming from
each direction. Therefore, the number of intersections at i-th point is
estimated as

Ni,1Ni2 · · ·Ni,k

The inequality is saying (a discrete version)∑
i

(Ni,1Ni2 · · ·Ni,k)
1/(k−1) ≤

∏
j

(
∑
i

Ni,j)
1/(k−1)
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The intuition is the quantity on LHS achieves its maximum when
intersections happen at a single point, say, when m = 1. This discrete
version is proven similarly: first, use Holder inequality,∑

i

(Ni,1Ni2 · · ·Ni,k)
1/(k−1) ≤

∏
j

(
∑
i

N
k/(k−1)
i,j )1/k

and for each j, we need to show∑
i

N
k/(k−1)
i,j ≤ (

∑
i

Ni,j)
k/(k−1)

we can simply repeat the L1 and L∞ argument.
Problem3

a) Let Σ1, · · · ,Σk be hyperplanes inside Rn with normal vectors parallel
to x1-axis, · · · , xk-axis respectively. For each j, choose a small rectangle
θj of size R−1 × R−α × · · · × R−α and a smooth bump function f̂j
supported on θj. Here, the power α is allowed to vary (this is made
possible because Σj doesn’t have curvature) and the rectangle coincide
with our old friend, cap when α = 1

2
. Then fj concentrates on θ∗j and

is roughly a constant function on this dual rectangle. WLOG, assume
fj ∼ 1 on θ∗j . If k ≥ 2, then the product Π|fj| concentrates on BRα .
We want to make a guess about e in the expression,

‖
k∏
i=1

|fj|1/k‖L2k/(k−1)
avg (BR)

≤ Re+ε

k∏
i=1

(‖fi‖L2
avg(ωBR ))

1/k

Now, LHS is roughly,

(

´
BRα

1´
BR

1
)(k−1)/2k = R−n(1−α) k−1

2k

while RHS is

Re+ε‖f1‖L2
avg(BR) = Re+ε(

R(n−1)α ∗R
Rn

)
1
2 = Re+ε− (1−α)(n−1)

2

Therefore, e has be greater than

n− 1

2
(1− α)− n(1− α)

k − 1

2k
=
n− k

2k
(1− α)

To make it large, we put α = 0. This is the best we can do, because
each Σj is only part of a plane and the radius is controlled by 1.

b) Before we start, we rewrite multilinear Kakeya in a proper way.
By what is proven in the last problem, if projected to Rk × {0}, we
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have

ˆ
QnS

k∏
j=1

(

Nj∑
a=1

Tj,a)
1

k−1 .
ˆ
QkS

k∏
j=1

(

Nj∑
a=1

T
(k)
j,a )

1
k−1

By multilinear Kakeya in k dimension, RHS is controlled by

.ε

k∏
j=1

N
1/(k−1)
j .ε

k∏
j=1

(
1

S

ˆ
QnS

Nj∑
a=1

Tj,a)
1

k−1 .ε S
−k/(k−1)

k∏
j=1

(

ˆ
QnS

Nj∑
a=1

Tj,a)
1

k−1

We transform both sides to the average:

Sn
 
QnS

k∏
j=1

(

Nj∑
a=1

Tj,a)
1

k−1 .ε S
−k/(k−1)Snk/(k−1)

k∏
j=1

(

 
QnS

Nj∑
a=1

Tj,a)
1

k−1

Finally, we get

 
QnS

k∏
j=1

(

Nj∑
a=1

Tj,a)
1

k−1 .ε S
(n−k)/(k−1)

k∏
j=1

(

 
QnS

Nj∑
a=1

Tj,a)
1

k−1

This non-trivial power of S in front of the product will explain the
appearance of e. In below, we will take S to be R1/2. To prove multi-
linear restriction theorem in this case, we use induction on the scale
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and proceed as follows,
 
BR

k∏
i=1

|fj|2/(k−1) ≤ AverageB
R1/2⊂BR

 
B
R

1
2

k∏
i=1

|fj|2/(k−1)

(By induction) . AverageB
R1/2

R
1
2

(ε+e) 2k
k−1

k∏
i=1

(‖fi‖L2
avg(ωB

R1/2
))

2/(k−1)

(Local Orthogonality) . AverageB
R1/2

R(ε+e) k
k−1

k∏
i=1

(

 
B
R1/2

∑
θ

|fi,θ|2)1/(k−1)

(Local Constant) . AverageB
R1/2

R(ε+e) k
k−1

 
B
R1/2

k∏
i=1

(
∑
θ

|fi,θ|2)1/(k−1)

= R(ε+e) k
k−1

 
BR

k∏
i=1

(
∑
θ

|fi,θ|2)1/(k−1)

(Multilinear Kakeya) . R(n−k)/2(k−1)R(ε+e) k
k−1

k∏
i=1

(

 
BR

∑
θ

|fi,θ|2)1/(k−1)

(Local Orthogonality) ∼ R(ε+e) k
k−1

+(n−k)/2(k−1)
k∏
j=1

‖fj‖2/(k−1)
Lavg(BR)

Therefore, the correct power should result in

ek

k − 1
+ (n− k)/2(k − 1) =

2k

k − 1
e

This is precisely e = n−k
2k

. I should say a few words about why we used

Multilinear Kakeya for R1/2, instead of R. This is because each |fi,θ| is
a tube of size R×R1/2 × · · ·R1/2. But what we proved for multilinear
Kakeya is for tubes of radius 1, so we need to rescale the whole picture.
Since we used mean integral, which is invariant under scaling, no other
powers of R will appear due to this procedure.


