
Decoupling, Problem set 2

We have been working on understanding the connection between Kakeya-type estimates about
the overlap properties of tubes and estimates for oscillatory integrals that involve cancellation. We
will explore this connection on the problem set.

1. (The connection between the restriction problem and the Kakeya problem) Let us say that
a Kakeya set of tubes of length L is a set of tubes {Tj} in Rn of length L and radius 1 so that
the directions of the tubes form a 1/L-separated 10/L-net on Sn−1. (In particular, the number of
tubes is ∼ Ln.) One of the forms of the Kakeya conjecture says that for a Kakeya set of tubes,

| ∪j Tj | & Ln−ε.

(Remark: Naively it seems very reasonable to expect | ∪j Tj | & Ln, but Besicovitch gave a
counterexample in the 1920s. In this example, | ∪j Tj | ∼ Ln/ logL. No one has found a worse
counterexample since, but the known lower bounds are far from the conjecture.)

Suppose that the Kakeya conjecture were false – i.e. there is some gamma < n and Kakeya sets
of tubes with | ∪ Tj | ≤ Lγ for arbitrarily large L.

Let E = ESn−1 be the extension operator for the sphere:

Eφ(x) :=

∫
Sn−1

e2πiω·xφ(ω)dvolSn−1(ω).

Recall that Stein conjectured ‖Eφ‖Lp(Rn) . ‖φ‖L∞ for each p > 2n
n−1 .

If the Kakeya conjecture were false in the sense above, prove that this restriction conjecture
would also be false. To do so, consider an example built of wave packets arranged using the Kakeya
set. Use the Kakeya property to help understand how many wave packets go through each ball at
scale BR1/2 . On each ball of radius BR1/2 , estimate the L2 norm of Eφ using local orthogonality,
and then put everything together to estimate

∫
BR
|Eφ|p.

We studied multilinear Kakeya and multilinear restriction. In these problems, when we work in
Rn, we have n families of objects, each family almost parallel to one of the coordinate axes. What
if we had fewer families?

2. Suppose that lj,a are lines in Rn, and that the angle from lj,a to the xj-axis is at most 1
100n .

Let Tj,a be the characteristic function of the 1-neighborhood of lj,a. Suppose that j goes from 1 up
to k, for some k ≤ n, and a goes from 1 up to Nj . Let QS ⊂ Rn be a cube of side length S. Prove
that

∫
QS

k∏
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Tj,a
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N
1

k−1

j .

Hint: This can be reduced to the multilinear Kakeya inequality in k dimensions in a pretty clean
way. Alternatively, if you want, you could imitate the proof of multilinear Kakeya.

3. Now we look at the multilinear restriction version of the last question. Suppose that Σj ⊂ Rn
are C2 hypersurfaces with diameter at most 1 and curvature at most 1. Suppose that each normal

vector to Σj makes an angle at most 1
100n with the xj-axis. Suppose that f̂j is supported in N1/RΣj .
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In class, we outlined the proof of the multilinear restriction inequality, which says that
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|fj |
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)
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.

Consider what happens when we take a product over only k factors. The most interesting
exponent is now 2k

k−1 .

a.) Look at examples and try to guess the best exponent e = e(k, n) so that
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Hint: the worse example occurs when Σj are planes.
b.) Prove the result that you guessed in part a.) by following the idea of the proof of the

multilinear restriction estimate that we discussed in class, using the k-linear Kakeya estimate in
problem 2 in place of multilinear Kakeya.


