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1. “Suppose that

f(x) =
N∑
j=1

aje
2πij2x

is a trigonometric polynomial whose frequencies are numbers between 1 and N2. Prove

that

‖f‖L4([0,1]) .ε N
ε‖f‖L2([0,1]).” (1)

It is sufficient to prove that

‖f‖4L4([0,1]) .ε N
ε‖f‖4L2([0,1]). (2)

Computing ‖f‖4L2([0,1]), we have

‖f‖4L2([0,1]) =
(
‖f‖2L2([0,1])

)2

=
(
‖f̂‖2`2(Z)

)2

=

 N∑
j=1

|aj |2
2

.

Thus, to prove (2), we must show that

‖f‖4L4([0,1]) .ε N
ε

 N∑
j=1

|aj |2
2

.

Expanding the LHS, we have

‖f‖4L4([0,1]) =

∫
[0,1]
|f |4 =

∫
[0,1]
|f2|2

=

∫
[0,1]

∣∣∣∣∣∣
∑

1≤j,k≤N
ajake

2πi(j2+k2)x

∣∣∣∣∣∣
2

dx

(3)

1
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For each m with 1 ≤ m ≤ 2N2, let

Sm = {(j, k) : 1 ≤ j ≤ N and j2 + k2 = m}.

Using the fact that the functions e2πimx are orthogonal on L2([0, 1]), we continue from

(3) and use the Cauchy-Schwarz inequality to give

‖f‖4L4([0,1]) =

∫
[0,1]

∣∣∣∣∣∣
∑

1≤m≤2N2

e2πimx

 ∑
(j,k)∈Sm

ajak

∣∣∣∣∣∣
2

dx

=
∑

1≤m≤2N2

∫
[0,1]

∣∣∣∣∣∣e2πimx
∑

(j,k)∈Sm

ajak

∣∣∣∣∣∣
2

dx

=
∑

1≤m≤2N2

∣∣∣∣∣∣
∑

(j,k)∈Sm

ajak

∣∣∣∣∣∣
2

≤
∑

1≤m≤2N2

|Sm|
∑

(j,k)∈Sm

|aj |2|ak|2.

By the number theory lemma that we discussed in class,

|Sm| .ε N ε

for all ε > 0, so we have

‖f‖4L4([0,1]) . N
ε

∑
1≤m≤2N2

∑
(j,k)∈Sm

|aj |2|ak|2

= N ε
∑

1≤j,k≤N
|aj |2|ak|2

= N ε

 N∑
j=1

|aj |2
2

= N ε‖f‖4L2([0,1],

as required.

2. “Suppose that f̂ is supported in [0, 1]. In class we gave the intuition that f ‘is roughly

locally constant on length scales smaller than 1.’ Here we pursue this question further.

Suppose in addition that

|f(x)| ≤ (1 + |x|)10.

Prove that if [x1, x2] ∈ [−1, 1], then

|f(x1)− f(x2)| . |x1 − x2|.”

Let x1, x2 ∈ [−1, 1] be fixed. Let η ∈ S(R) so that η ≡ 1 on [0, 1]. Then f̂ = f̂η,

so f = f ∗ η̌. Since η ∈ S(R), η̌ is also in S(R). For future notational convenience, let
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ϕ = η̌. In particular, we can write

|f(x1)− f(x2)| =

∣∣∣∣∫ f(y)ϕ(x1 − y) dy −
∫
f(y)ϕ(x2 − y) dy

∣∣∣∣
=

∣∣∣∣∫ f(y) (ϕ(x1 − y)− ϕ(x2 − y)) dy

∣∣∣∣
≤
∫
|f(y)| |ϕ(x1 − y)− ϕ(x2 − y)| dy

≤
∫

(1 + |y|)10 |ϕ(x1 − y)− ϕ(x2 − y)| dy.

(4)

By the Mean Value Theorem, given y ∈ R, there exists x3 = x3(y) between x1 and x2

so that

|ϕ(x1 − y)− ϕ(x2 − y)| = |ϕ′(x3 − y)||(x1 − y)− (x2 − y)| = |ϕ′(x3 − y)||x1 − x2|.

Substituting this into (4), we have

|f(x1)− f(x2)| ≤ |x1 − x2|
(∫

(1 + |y|)10|ϕ′(x3 − y)| dy
)

= |x1 − x2|

(∫
|y|≥1

(1 + |y|)10|ϕ′(x3 − y)|dy +

∫
|y|≤1

(1 + |y|)10|ϕ′(x3 − y)|dy

)
.

(5)

Since ϕ is Schwartz, ϕ′ is also Schwartz, so for every M there exists CM > 0 so that

|ϕ′(z)| ≤ CM

(
1

1 + |z|

)M
.

for all z. In particular, there exists C > 0 so that

|ϕ′(z)| ≤ C

(
1

1 + |z|

)12

. (6)

To estimate the first integral on the RHS of (5), note that since since x3(y) is between

x1 and x2 for each y, we must have

|x3 − y| = |y − x3| ≥ |y| − |x3| ≥ |y| − 1.

Thus, (
1

1 + |x3 − y|

)12

≤
(

1

1 + (|y| − 1)

)12

=

(
1

|y|

)12

.

Combined with (6), this inequality implies that∫
|y|≥1

(1 + |y|)10|ϕ′(x3 − y)|dy ≤ C

∫
|y|≥1

(1 + |y|)10

(
1

|y|

)12

dy

≤ C

∫
|y|≥1

(2|y|)10

(
1

|y|

)12

= 210C

∫
|y|≥1

dy

y2
.
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Meanwhile, to estimate the second integral on the RHS of (5), we write∫
|y|≤1

(1 + |y|)10|ϕ′(x3 − y)|dy ≤ ‖ϕ′‖L∞(R)

∫
|y|≤1

(1 + |y|)10 dy ≤ 210‖ϕ′‖L∞(R).

Having proved that both∫
|y|≥1

(1 + |y|)10|ϕ′(x3 − y)|dy and

∫
|y|≤1

(1 + |y|)10|ϕ′(x3 − y)|dy

are finite, it follows by (5) that

|f(x1)− f(x2)| . |x1 − x2|

and that the implied constant does not depend on f . In particular, letting C be as in

(6), we see that f is Lipschitz with Lipschitz constant

210

(
C

∫
|y|≥1

dy

y2
+ ‖ϕ′‖L∞(R)

)
.

3. “A decoupling problem. Suppose that

Ω =
N⋃
j=1

[j2 − 1, j2].

Estimate Dp(Ω = ∪Nj=1θj) as well as you can for p in the range 2 ≤ p ≤ ∞. To prove

lower bounds, describe examples. To prove upper bounds, combine the argument from

the first problem with tools from our second class: the local orthogonality lemma, the

locally constant lemma, and the parallel decoupling lemma.”

We claim that

Dp(Ω = ∪Nj=1θj) .ε

N ε, 2 ≤ p ≤ 4

N εN
1
2
− 2

p , 4 ≤ p ≤ ∞.
. (7)

As a motivating example, let f1 be a bump function of height 1 which decays rapidly

outside of [−1, 1] and satisfies f1(0) = 1. For each j > 1, let

fj(x) = e2πi(j2−1)xf1(x).

For f =
∑N

j=1 fj , we have that f(0) = N . Since some of the fj oscillate more quickly

than in our analogous example for Ω = ∪Nj=1[j − 1, j], we expect that there will be

constructive interference on a shorter interval around 0; indeed writing

|f(x)| =

∣∣∣∣∣∣
N∑
j=1

fj(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣f1(x)
N∑
j=1

e2πi(j2−1)x

∣∣∣∣∣∣
= |f1(x)|

∣∣∣(1 + cos(3x) + · · ·+ cos((N2 − 1)x)
)

+ i
(

sin(3x) + · · ·+ sin((N2 − 1)x
)∣∣∣,
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we see that to have constructive interference , it is necessary that (N2− 1)x < π/2. For

a sufficient condition for constructive interference, note that if N2x < π/4, then

|f(x)| ≥ |Re(f(x))| ≥ N√
2
.

Thus we have |f(x)| ∼ N on an interval of width ∼ N−2, which implies that

‖f‖Lp & N ·N
−2
p

Since  N∑
j=1

‖fj‖2Lp

1/2

∼ N
1
2 ,

we have that

Dp(Ω) & N
1
2
− 2

p .

As we will soon prove, this example is sharp up to ε-loss for p ≥ 4.

To prove (8), we use the following proposition, which is an analogue of our result from

problem 1.

Proposition 1.1. Suppose that

suppf̂ ⊂ Ω =

N⋃
j=1

[j2 − 1, j2]

and that I is any interval of length 1. Then∫
I
|f |4 . N ε‖f‖4L2(ωI) (8)

for some weight ωI .

Before proving Proposition 1.1, we will show that Proposition 1.1 implies (8). We

begin by proving an analogue of the local decoupling lemma; specifically, we will show

that if I is any interval of length 1, ωI is the weight in the proposition, and

f =
∑
j

fj

with f̂j supported in [j2 − 1, j2], then

‖f‖Lp(I) .

N
ε
(∑N

j=1 ‖fj‖2Lp(ωI)

)1/2
, 2 ≤ p ≤ 4

N εN
1
2
− 2

p

(∑N
j=1 ‖fj‖2Lp(ωI)

)1/2
, p ≥ 4

. (9)

First, suppose that p ≥ 4. In this case, given an interval I of length 1, we write

‖f‖pLp(I) =

∫
I
|f |p ≤ ‖f‖p−4

L∞(I)

∫
I
|f |4

. N ε‖f‖4L2(ωI)‖f‖
p−4
L∞(I).

(10)
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By the local orthogonality lemma (proved in class),

‖f‖2L2(ωI) .
∑
j

‖fj‖2L2(ωI). (11)

(Note: one would actually need a statement of the local orthogonality lemma which gives

an upper bound for ‖f‖2L2(ωI) rather than a bound for ‖f‖2L2(I). However, adapting our

proof from class to the modified statement is not difficult; all that is needed is to omit

the step in which one bounds an integral over I by the integral on R of |f |2 times the

weight.) Meanwhile, we use the the triangle inequality, the locally constant lemma, and

the Cauchy-Schwarz inequality to give

‖f‖p−4
L∞(I) ≤

∑
j

‖fj‖L∞(I)

p−4

.

 N∑
j=1

‖fj‖L1(ωI) · 1

p−4

≤ N
p−4
2

 N∑
j=1

‖fj‖2L1(ωI)


p−4
2

.

Since R has finite total weighted measure, we have that

‖f‖L1(ωI) . ‖f‖L2(ωI).

More generally, if p ≤ q, then

‖ · ‖Lp(ωI) . ‖ · ‖Lq(ωI) (12)

Thus,

‖f‖p−4
Lp(I) . N

p−4
2

 N∑
j=1

‖fj‖2L2(ωI)


p−4
2

.

Combining this result with (11), we continue from (10) to give

‖f‖pLp(I) . N
εN

p−4
2

 N∑
j=1

‖fj‖2L2(ωI)

p/2

. N εN
p−4
2

 N∑
j=1

‖fj‖2Lp(ωI)

p/2

.

(13)

(In the second line, we have used the fact that ‖ · ‖L2(ωI) . ‖ · ‖Lp(ωI).) Taking pth roots

gives the p ≥ 4 case of (8).

We remark that this proof does not work for p < 4, because, for instance, when we

said that ∫
I
|f |p ≤ ‖f‖p−4

L∞(I)

∫
I
|f |4,
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we were relying on the fact that p−4 was nonnegative to give the intermediate inequality

|f |p−4 ≤ ‖f‖p−4
L∞(I).

To prove that

‖f‖Lp(I) . N
ε

 N∑
j=1

‖fj‖2Lp(ωI)

1/2

for 2 ≤ p ≤ 4, note that if we substitute 4 for p in (13), then the first line implies that

‖f‖L4(ωI) . N
ε

 N∑
j=1

‖fj‖2L2(ωI)

1/2

. (14)

Fixing p with 2 ≤ p < 4, we use (12) along with (14) to give

‖f‖L2(I) . ‖f‖L2(ωI) . ‖f‖L4(ωI) . N
ε

 N∑
j=1

‖fj‖2L2(ωI)

1/2

. N ε

 N∑
j=1

‖fj‖2Lp(ωI)

1/2

,

thereby completing our proof of (9). Our claim in (8) now follows by the parallel

decoupling lemma.

Having proved that Proposition 1.1 implies our claimed upper bound, we now prove

Proposition 1.1.

Proof. (Proof of Proposition 1.1). Let δ > 0 such that δ � 1/4. Let η be a non-negative

real-valued bump function that is identically 1 on I, decays rapidly outside I, and has

Fourier transform supported in [−δ, δ].
We take η2 as a weight function to give

‖f‖4L2(ωI) =
(
‖f‖2L2(ωI)

)2
=

(∫
R
|f |2η2

)2

=

(∫
R

∣∣∣f̂ ∗ η̂∣∣∣2)2

=

∫
R

∣∣∣∣∣∣
∑
j

(
f̂j ∗ η̂

)∣∣∣∣∣∣
22

For each j, f̂j ∗ η̂ is supported on [j2 − 1 − δ, j2 + δ]. Since we chose δ � 1/4 < 1/2,

then intervals [j2 − 1− δ, j2 + δ] are disjoint, so by orthogonality,

‖f‖4L2(ωI) =

∑
j

∫
R
|f̂j ∗ η̂|2

2

=

∑
j

‖fj‖2L2(ωI)

2

. (15)
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Thus, we must show that ∫
I
|f |4 .ε N ε

∑
j

‖fj‖2L2(ωI)

2

. (16)

Since η is nonnegative and is identically 1 on I, we have that∫
I
|f |4 .

∫
R
|fη|4 =

∫
R
|f2η2|2

= ‖f2η2‖2L2(R)

=
∥∥∥f̂2 ∗ η̂2

∥∥∥2

L2(R)
(Plancherel)

=

∫
R

∣∣∣f̂2 ∗ η̂2
∣∣∣2

=

∫
R

∣∣∣∣∣∣
∑

1≤j,k≤N
(f̂j ∗ f̂k) ∗ (η̂ ∗ η̂)

∣∣∣∣∣∣
2

=

∫
R

∣∣∣∣∣∣
∑

1≤j,k≤N
(f̂j ∗ η̂) ∗ (f̂k ∗ η̂)

∣∣∣∣∣∣
2

.

(17)

For each pair (j, k), the convolution (f̂j ∗ η̂) ∗ (f̂k ∗ η̂) is supported on the interval

[j2 + k2 − 2 − 2δ, j2 + k2 + 2δ]. For each m ≥ −1, let Ωm be the interval [m,m + 1).

An interval of the form [j2 + k2 − 2 − 2δ, j2 + k2 + 2δ] can intersect Ωm only if m ∈
{j2 + k2 − 3, j2 + k2 − 2, j2 + k2 − 1, j2 + k2, j2}. By the number theory lemma from

problem 1, if m ≤ 2N2 = N2 +N2, then each of the equations

m = j2 + k2 − 2

m = j2 + k2 − 1

m = j2 + k2 − 1

m = j2 + k2 + 1

has .γ (2N2)γ solutions for any γ > 0. Thus, for each m,

#{(j, k) : [j2 + k2 − 2− 2δ, j2 + k2 + 2δ] ∩ Ωm 6= ∅} .ε N ε

for any ε > 0. By Lemma 1.2, stated and proved below,∫
R

∣∣∣∣∣∣
∑

1≤j,k≤N
(f̂j ∗ η̂) ∗ (f̂k ∗ η̂)

∣∣∣∣∣∣
2

.ε N
ε
∑

1≤j,k≤N

∫ ∣∣∣(f̂j ∗ η̂) ∗ (f̂k ∗ η̂)
∣∣∣2

= N ε
∑

1≤j,k≤N

∫
|(fjη)(fkη)|2

. N ε
∑

1≤j,k≤N
‖fkη‖2L∞(R)

∫
|fjη|2.

(18)
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We claim that

‖fkη‖L∞(R) . ‖fk‖L1(ωI).

To prove so, we mimic the proof of the locally constant lemma from class: Let ψ ∈ S(R)

satisfy ψ ≡ 1 on [−2, 2], and let

ϕk(x) = ψ(x− k2).

Since f̂k ∗ η̂ is supported on [k2 − 1− δ, k2 + 1 + δ], we have

(f̂k ∗ η̂)ϕk = f̂k ∗ η̂,

which implies that

fkη = (fkη) ∗ ϕ̌k.

For any x ∈ R, we have

|(fkη)(x)| =

∣∣∣∣∫
R
fk(y)η(y)ϕ̌k(x− y) dy

∣∣∣∣
≤ ‖ϕ̌k‖L∞(R)

∫
R
|fk(y)η(y)|

= ‖ψ‖L∞(R)‖fk‖L1(ωI).

Thus,

‖fkη‖L∞(R) . ‖fk‖L1(ωI),

and the implied constant does not depend on k. As discussed in class, ‖ · ‖Lp(ωI) .

‖ · ‖Lp(ωI) for p ≤ q, so we have that

‖fk‖L1(ωI) . ‖fk‖L2(ωI).

Continuing from (18) gives∫
R

∣∣∣∣∣∣
∑

1≤j,k≤N
(f̂j ∗ η̂) ∗ (f̂k ∗ η̂)

∣∣∣∣∣∣
2

. N ε
∑

1≤j,k≤N
‖fkη‖2L2(ωI)

∫
|fjη|2

= N ε
∑

1≤j,k≤N
‖fkη‖2L2(ωI)‖fjη‖

2
L2(ωI)

= N ε

 ∑
1≤j≤N

‖fjη‖2L2(ωI)

2

.

Combining this result with (17) gives (16), as required. This completes our proof of

Proposition 1.1 modulo the proof of our lemma, which is provided below. �

Lemma 1.2. Suppose that Ω ⊂ Rn is the disjoint union

Ω =
⊔
m∈N

Ωm,
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and that g ∈ L2(Ω) is given by

g =
N∑
k=1

gk

for some functions gk ∈ L2(Ω). For each m, let

Sm = {k : 1 ≤ k ≤ N and supp gk ∩ Ωm 6= ∅}

If |Sm| .ε N ε for all m, then ∫
Ω
|g|2 . N ε

∑
k

∫
Ω
|gk|2.

Proof. Since the sets Ωm are disjoint, we have∫
|g|2 =

∑
m

∫
Ωm

|g|2 =
∑
m

∫
Ωm

∣∣∣∣∣∑
k

gk

∣∣∣∣∣
2

=
∑
m

∫
Ωm

∣∣∣∣∣∣
∑
k∈Sm

gk(x) · 1

∣∣∣∣∣∣
2

dx.

For each x, we have by the Cauchy-Schwarz inequality that∣∣∣∣∣∣
∑
k∈Sm

gk(x) · 1

∣∣∣∣∣∣
2

≤ |Sm|
∑
k∈Sm

|gk(x)|2 . N ε
∑
k∈Sm

|gk(x)|2

Thus,∫
|g|2 . N ε

∑
m

∑
k∈Sm

∫
Ωm

|gk(x)|2 = N ε
N∑
k=1

∑
m

∫
Ωm

|gk|2 = N ε
N∑
k=1

∫
Rn

|gk|2.
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