
18.118 DECOUPLING
LECTURE 7 NOTES

INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY JONATHAN TIDOR

Our goal over this lecture and part of the next lecture is to prove a
weaker version of decoupling for the paraboloid. Here is the setup:

• P = {(ω1, . . . , ωn) ∈ Rn : ωn = ω2
1 + · · ·+ ω2

n−1, |ω| = 1};
• Ω = N 1

R
P ;

• Ω =
⊔
θ where θ are R−1/2-caps;

• write Dp(R) = Dp,n(R) = Dp (Ω =
⊔
θ).

Theorem 0.1 (Bourgain). For 2 ≤ p ≤ 2n
n−1

and all ε > 0, then

Dp,n(R) ≤ C(n, ε)Rε. In other words, for f =
∑

θ fθ with supp(f̂θ) ⊆ θ,

‖f‖Lp . Rε

(∑
θ

‖fθ‖2
Lp

)1/2

.

Recall the stronger version of decoupling for the paraboloid that we
will eventually prove:

Theorem 0.2 (Bourgain-Demeter). For 2 ≤ p ≤ 2(n+1)
n−1

and all ε > 0,
then Dp,n(R) ≤ C(n, ε)Rε.

One hint that Theorem 0.1 might be more tractable than Theorem
0.2 is that the maximum value of p is the critical exponent in multi-
linear restriction. Our proof of Theorem 0.1 indeed uses multilinear
restriction as an input.

This lecture is divided into 3 parts. First are the “multiscale tools”;
a statement of some of the properties of the decoupling problem that
makes arguments at different scales work well. Next is a “multilin-
ear decoupling” theorem which follows immediately from multilinear
restriction. Finally is the proof of the decoupling theorem from the
multilinear decoupling theorem.

1. Multiscale tools

The way decoupling is written down makes working at multiple scales
especially convenient. This is made specific by the next two theorems.
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Lemma 1.1. If L : Rn → Rn is a linear change of variables, for any
decoupling problem Ω =

⊔
θ,

Dp

(
Ω =

⊔
θ
)

= Dp

(
LΩ =

⊔
Lθ
)
.

Proof. All we have to do is write the right transformation f 7→ f̃ where

supp(f̂) ⊆ X implies that supp( ˆ̃f) ⊆ LX and then check that the
Jacobian factors that pop out cancel each other.

For any f with supp(f̂) ⊆ X, write f̃(x) = f((L∗)−1x). Then

ˆ̃f(ω) =

∫
e2πiω·xf̃(x) dx.

Making the change of variables y = (L∗)−1x, this becomes∫
e2πiω·L∗yf(y)(detL∗) dy =

∫
e2πiLω·yf(y)(detL∗) dy = (detL∗)f̃(Lω).

Furthermore, note that the same change of variables gives

‖f̃‖Lp =

(∫
|f̃(x)|p dx

)1/p

=

(∫
|f(y)|p(detL∗) dy

)1/p

= (detL∗)1/p‖f‖Lp .

Then taking f with supp(f̂) ⊆ Ω and writing f =
∑

θ fθ where

supp(f̂θ) ⊆ θ, it follows that f̃ =
∑

θ f̃θ where supp( ˆ̃f) ⊆ LΩ and

supp( ˆ̃fθ) ⊆ Lθ.
Therefore

‖f‖Lp = (detL∗)−1/p‖f̃‖Lp

≤ Dp

(
LΩ =

⊔
Lθ
)

(detL∗)−1/p

(∑
θ

‖f̃θ‖2
Lp

)1/2

= Dp

(
LΩ =

⊔
Lθ
)(∑

θ

‖fθ‖2
Lp

)1/2

.

This proves thatDp (Ω =
⊔
θ) ≤ Dp (LΩ =

⊔
Lθ). The same argument

with L replaced by L−1 shows the reverse inequality. �

This lemma is used to show that medium-sized subsets of our parab-
oloid behave like the original problem.
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Corollary 1.2. Write R = R1 · R2. Partition Ω =
⊔
τ where the τ ’s

are R
−1/2
1 caps. Then

Dp

(
τ =

⊔
θ⊂τ

θ

)
∼ Dp,n(R2).

Proof. Suppose τ is anR
1/2
1 cap centered at the point α = (α1, . . . , αn−1, αn)

on the paraboloid. Consider the linear change of variables L defined
by

Li(ω) =

{
R

1/2
1 (ωi − αi) for 1 ≤ i < n,

R1

(
(ωn − αn)− 2

∑n−1
j=1 αj(ωj − αj)

)
for i = n.

L maps the paraboloid to itself, sends α to the origin, and scales up

the ω1-,. . .,ωn−1-axes by a factor of R
1/2
1 . This implies that L sends τ

(approximately) to Ω. The desired statement now follows from Lemma
1.1. �

Proposition 1.3. For R = R1 ·R2,

Dp(R) . Dp(R1) ·Dp(R2).

Proof. Partition Ω into R
−1/2
1 caps τ and refine that partition into one

of R−1/2 caps θ. For a given f with supp(f̂) ⊆ Ω, define fθ and fτ in
the usual way. Then

‖f‖2
Lp ≤ Dp(R1)2

∑
τ

‖fτ‖2
Lp

. Dp(R1)2
∑
τ

(
Dp(R2)2

∑
θ⊂τ

‖fθ‖2
Lp

)
∼ (Dp(R1)Dp(R2))2

∑
θ

‖fθ‖2
Lp .

�

Remark 1.4. If one is not careful, it almost looks like Proposition
1.3 could prove the decoupling theorem. In particular the Proposition
implies that

Dp,n(R) ≤ (Dp,n(R1/2))2

(up to a small constant that can be removed if one works with a square
partition instead of a partition into caps). Say that Dp,n(R0) ≤ C(n, ε)Rε

0

for some R0 > 1, some ε > 0, and some constant C(n, ε). Then it
follows that Dp,n(R2

0) ≤ C(n, ε)2(R2
0)ε and in general that Dp,n(R) ≤
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RlogC(n,ε)/ logR0Rε. This is a good bound if C(n, ε) ≤ 1, but it does not
say anything nearly strong enough most of the time.

However, this does imply that if we could find any fixed R0 > 1 and
ε > 0 such that Dp,n(R0) ≤ Rε

0, then Dp,n(R) . Rε for all R. In
principle, the decoupling theorem for any fixed ε can be proven by this
observation together with a finite computation to check the base case.
The computation would be absurdly long, so that this is not practical
(even with a computer).

2. Multilinear decoupling

The setup of multilinear decoupling is the following:

• P1, . . . , Pn ⊆ P are transverse;
• Ωj = N 1

R
Pj;

• Ωj =
⊔
θ;

• MDp,n(R) is the best constant such that for supp(f̂j) ⊆ Pj and
fj =

∑
θ fj,θ in the usual way,

∥∥∥∥∥
n∏
j=1

|fj|
1
n

∥∥∥∥∥
Lp

≤MDp,n(R)
n∏
j=1

∑
θ⊂Ωj

‖fj,θ‖2
Lp

 1
2
· 1
n

.

It turns out that unlike in the case of restriction and multilinear
restriction, decoupling and multilinear decoupling are closely related.
One direction of this relation is easy.

Proposition 2.1. MDp,n(R) ≤ Dp,n(R).

Proof.

∥∥∥∥∥
n∏
j=1

|fj|
1
n

∥∥∥∥∥
Lp

≤
n∏
j=1

‖fj‖
1
n
Lp ≤

n∏
j=1

Dp,n(R)

∑
θ⊂Ωj

‖fj,θ‖2
Lp

 1
2


1
n

.

The first inequality follows from Hölder since

‖
∏
|fj|1/n‖Lp ≤

∏
‖f 1/n

j ‖Lpn =
∏
‖fj‖1/n

Lp

and the second inequality is the definition of the decoupling constant.
�
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By the standard argument, it is the same to define the decoupling
constant as the smallest MDp,n(R) such that∥∥∥∥∥

n∏
j=1

|fj|
1
n

∥∥∥∥∥
Lp
avg(BR)

≤MDp,n(R)
n∏
j=1

∑
θ⊂Ωj

‖fj,θ‖2
Lp
avg(ωBR

)

 1
2
· 1
n

.

This is convenient to use since for average-Lp norms Hölder can be
written as ‖f‖Lp

avg(BR) ≤ ‖f‖Lq
avg(BR) for p ≤ q.

Proposition 2.2. For 2 ≤ p ≤ 2n
n−1

,

MDp,n(R) . Rε.

Proof. ∥∥∥∥∥
n∏
j=1

|fj|
1
n

∥∥∥∥∥
Lp
avg(BR)

≤

∥∥∥∥∥
n∏
j=1

|fj|
1
n

∥∥∥∥∥
L

2
nn−1
avg (BR)

(Hölder)

. Rε

n∏
j=1

‖fj‖
1
n

L2
avg(ωBR

)(multilinear restriction)

. Rε

n∏
j=1

∑
θ⊂Ωj

‖fj,θ‖L2
avg(ωBR

)

 1
2
· 1
n

(local orthogonality)

≤ Rε

n∏
j=1

∑
θ⊂Ωj

‖fj,θ‖Lp
avg(ωBR

)

 1
2
· 1
n

(Hölder)

�

Remark 2.3. Can this proof be improved to cover the regime 2n
n−1

<

p ≤ 2(n+1)
n−1

? There is room for improvement in this argument if either
of the two times that Hölder is used are not sharp. Hölder is used
gives ‖fj,θ‖L2

avg(ωBR
) ≤ ‖fj,θ‖Lp

avg(ωBR
) in the last line of the proof. This

inequality is sharp when |fj,θ| is close to evenly distributed over all of
the ball BR. When |fj,θ| is far from evenly distributed over the ball BR,
we can improve over Holder. Later we will look at some more examples
and discuss why it is also possible to get an improvement when |fj,θ| is
evenly distributed over BR.

3. Proof of the decoupling theorem

The bounds on multilinear decoupling in the previous section give
bounds on the regular decoupling problem using the ideas of broad and
narrow balls introduced in Lecture 6.
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Lemma 3.1 (Main Lemma). For any K ≥ 1,

Dp,n(R) . KO(1)MDp,n(R) +Dp,n−1(K2)Dp,n(R/K2).

For n = 2 this inequality says that

Dp,2(R) . KO(1)MDp,2(R) +Dp,2(R/K2).

Using the Main Lemma with K ∼ logR implies Theorem 0.1 by
induction on dimension and on scales.

Let Ω =
⊔
τ for τ a K−1-cap in P . Write f =

∑
τ fτ in the usual

way. For B = Br(x0) a ball of radius r ≤ R, define the set of significant
τ ’s to be

S(B) =

{
τ : ‖fτ‖Lp(B) ≥

1

100 ·#τ
‖f‖Lp(B)

}
.

Define
fB =

∑
τ∈S(B)

fτ .

Note that
0.99‖f‖Lp(B) ≤ ‖fB‖Lp(B) ≤ 1.01‖f‖Lp(B)

by the triangle inequality. DefineB to be broad if there exists τ1, . . . , τn ∈
S(B) that are transverse. Define B to be narrow otherwise. Writing
our large ball BR as a disjoint union of smaller balls Br, let

Broad =
⊔

Br broad

Br and Narrow =
⊔

Br narrow

Br.

The Main Lemma is proved by computing separate estimates on the
broad and narrow regions. This gives rise to the two terms in the Main
Lemma.

Lemma 3.2 (Broad estimate).

‖f‖Lp(Broad) ≤ rO(1)MDp,n(R)

(∑
θ

‖fθ‖2
Lp(BR)

)1/2

.

The broad estimate can be proved in a (fairly) straightforward man-
ner, as was the case in multilinear restriction. There is a slight com-
plication which will be addressed in the next lecture where the proof
is presented.

Lemma 3.3 (Narrow estimate). For B narrow, taking r = K2,

‖fB‖Lp(B) . Dp,n−1(K2)

 ∑
τ∈S(B)

‖fτ‖2
Lp(B)

1/2

.
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Most of the proof of the narrow estimate is presented in the next
section.

Proof of Main Lemma. The narrow estimate implies that for each nar-
row B,

‖f‖Lp(B) . Dp,n−1(K2)

(∑
τ

‖fτ‖2
Lp(B)

)1/2

.

Parallel decoupling (Lemma 1.14 in Lecture 2) implies that the bounds
on the decoupling constant of each narrow B can be combined to give
a bound on the decoupling constant of all of Narrow. In particular,

‖f‖Lp(Narrow) . Dp,n−1(K2)

(∑
τ

‖fτ‖2
Lp(BR)

)1/2

.

The narrow estimate gives good decoupling that goes part of the way,
from scale Ω to scale τ . Applying Proposition 1.3 turns this estimate
into pretty good decoupling all the way from scale Ω to scale θ. Namely,

Dp,n−1(K2)

(∑
τ

‖fτ‖2
Lp(BR)

)1/2

. Dp,n−1(K2)Dp,n(R/K2)

(∑
θ

‖fθ‖2
Lp(BR)

)1/2

.

Combining this with the broad estimate for r = K2 gives

‖f‖Lp(BR) .
(
KO(1)MDp,n(R) +Dp,n−1(K2)Dp,n(R/K2)

)(∑
θ

‖fθ‖2
Lp(BR)

)1/2

.

�

4. Proof of narrow estimate

Suppose that B is narrow. This implies that there exists a hyper-
plane Π∗ such that all significant τ ∈ S(B) have normals almost in Π∗.
In particular nor(τ) lies in the O(K−1) neighborhood of Π∗.

Choose orthonormal coordinates η1, . . . , ηn such that ηn is normal to
Π∗. Let y1, . . . , yn be the dual coordinates to η1, . . . , ηn. Let Π be the
hyperplane yn = t.

Lemma 4.1.

‖fB‖Lp(Π∩B) . Dp,n−1(K2)

 ∑
τ∈S(B)

‖fτ‖2
Lp(Π∩B)

1/2

.
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Proof. Write (y1, . . . , yn) = (y′, yn) and (η1, . . . , ηn) = (η′, ηn). Then
write gB(y′) = fB(y′, t) and gτ (y

′) = fτ (y
′, t).

To prove this lemma it suffices to show

‖gB‖Lp(Π∩B) . Dp,n−1(K2)

 ∑
τ∈S(B)

‖gτ‖2
Lp(Π∩B)

1/2

.

If we can describe supp(ĝτ), this will become a decoupling problem in
n− 1 dimensions.

gτ (y
′) = fτ (y

′, t) =

∫
Rn

e2πi(y′,t)·(η′,ηn)f̂τ (η) dη

=

∫
Rn−1

e2πiy′·η′
(∫

R
e2πitηn f̂τ (η) dηn

)
dη′.

Therefore the Fourier inversion formula implies

ĝτ (η
′) =

∫
R
e2πitηn f̂τ (η

′, ηn) dηn.

In particular, supp(ĝτ ) is contained in the projection of τ to Π∗. Now
this lemma is a consequence of the following claim. �

Claim 4.2. For a set of τ such that each nor(τ) lies in the O(K−1)-
neighborhood of Π∗, it follows that the projections of τ onto Π∗ are K−1-
caps in the K−2-neighborhood of the (n− 1)-dimensional paraboloid.

Proof. Imagine Rn parameterized by η1, . . . , ηn with the ηn-axis com-
ing out of the page. Imagine the paraboloid in this coordinate sys-
tem, rotated by some angle. The paraboloid is divided into a bunch
of K−1-caps. We are interested in the caps τ whose normal points
approximately in the η1, . . . , ηn−1-plane. These are exactly the caps
which lie along the outside of the projection of the paraboloid down to
(n− 1)-dimensions.

Furthermore, consider one of these K−1-caps τ that lie along the edge
of the paraboloid. Since the normal to τ is tangent to Π∗, the direction
ηn is tangent to τ . So when projected down onto the η1, . . . , ηn−1-
plane, τ becomes a K−1 cap in the K−2-neighborhood of the (n − 1)-
dimensional paraboloid. �

The proof of the narrow estimate follows from Lemma 4.1. Details
will be presented next lecture.
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