
18.118 DECOUPLING
LECTURE 6

INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY DONGHAO WANG

We begin by recalling basic settings of multi-linear restriction prob-
lem. Suppose Σi, · · · ,Σn are some C2 hyper-surfaces in Rn with di-
ameter ≤ 1 and |curvature| . 1. We require their normal vectors do
not vary too much: for any point ω ∈ Σj, Angle(norΣj(ω),ej) ≤ 1

100n
,

where ej is the unit vector parallel to xj-axis. This also means their
normal vectors are almost perpendicular to each other. If there are
some functions fj (1 ≤ j ≤ n) whose Fourier transformations f̂j are
supported on the 1/R−neighborhood of Σj, then theorem says,

Theorem 0.1 (Multilinear Restriction).

(1) ‖
n∏
i=1

|fj|1/n‖L2n/(n−1)
avg (BR)

≤ Rε

n∏
i=1

(‖fi‖L2
avg(ωBR ))

1/n

We decompose N1/RΣj into disjoint union of R−1/2−caps
⊔
θj,a.

Accordingly, each function fj is decomposed into
∑
fj,θ such that

f̂j,θ is the restriction of f̂ on each cap θ ⊂ N1/RΣj. Then |fj,θ| is
roughly constant on translations of θ∗ and each θ∗ is a tube of size
R1/2×· · ·×R1/2×R. Therefore, the LHS of (1) is a quantitative mea-
sure of how these tubes of different directions and locations interfere
with each other.

For the purpose of induction on scales, we also group these tubes
according to their locations: let τ be a R−1/4−cap inside NR−1/2Σj and
define

fj,τ =
∑
θ⊂τ

fj,θ

Each fj,τ is now locally constant on translations of the dual cap τ ∗ and
τ ∗ is of a smaller size R1/4× · · · ×R1/4×R1/2. Geometrically,

∑
θτ
fj,θ

concentrates on the overlap of translations of θ∗. Due to the size of
θ∗, we can only see concentration on some BR1/2 . The translations of
τ ∗ are expected to be contained in these balls and the arrangement of
these smaller tubes allows us to see how energy is actually distributed
inside BR1/2 .

Recall local orthogonality theorem:
1
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Figure 1. Tubes overlap.

Figure 2. Smaller tubes refine energy distribution.

Theorem 0.2 (Local Orthogonality).

(2) ‖fj,τ‖2
L2(B

R1/2 ) .
∑
θ⊂τ

‖fj,θ‖2
L2(ωB

R1/2
)
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Remark 0.3. The reverse inequality is not true in general. For it to
be true, say,

‖fj,τ‖2
L2(ωB

R1/2
) &

∑
θ⊂τ

‖fj,θ‖2
L2(B

R1/2 )

we need to use smooth cut-off functions instead of characteristic func-
tions of caps.

The problem with our current choice is that f̂j,τ may have a bump
at joints of two caps and this will produce some non-smoothness when
passing to f̂j,θ. The inverse Fourier transformation of the characteristic
function doesn’t decay fast and when we write

f̂j,θ = χθf̂τ

and do the convolution
fθ = χ̌θ ∗ fτ

the energy of fτ outside BR1/2 may contribute significantly to fθ after
convolution. This prevents the reverse inequality being true.

Figure 3. χ̌θ doesn’t decay fast.

The local orthogonality theorem allows us to start with θ and keep
track of ∑

|fj,θ(x)|2,
∑
|fj,τ (x)|2,

∑
bigger caps

|fj,τ ′(x)|2, · · ·

until |fj(x)|2. We can think of

|fj,θ(x)|2dx
as the energy density of fj,θ and it concentrates on some beams (trans-
lations of θ∗). At each step of induction, even though the energy is
conserved, beams are refined (become smaller) and they may move
perpendicular to xj−axis. Finally, |fj(x)| can be quite concentrated.

Instead of functions whose support is near Σj, we can study functions
whose support is precisely on Σj:
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Definition 0.4 (Extension Operator). For any smooth function φ ∈
C∞(Σ), we define

EΣφ(x) =

∫
Σj

e2πiωxφ(x)dvolΣ(ω)

This operator is called the extension operator over Σ

In line with Multilinear Restriction theorem, we have

Theorem 0.5 (Multilinear Restriction’).

‖
n∏
i=1

|EΣjφj|1/n‖L2n/(n−1)(BR) ≤ Rε

n∏
j=1

‖φj‖1/n

L2(Σj)

This is not exactly the same form as multi-linear restriction because
the integral on RHS is taken in the frequency space instead of physical
space. However, the following lemma will allow us to compare them:

Lemma 0.6. If Π is a hyperplane perpendicular to ej (say, to xj-axis),
then ∫

Π

|Ejφ|2 ∼
∫

Σj

|φ|2

where Ej is EΣj for short.

Proof. WLOG, assume j = n and write a point x ∈ Π as (x1, x2, · · · , xn−1, t)
where t is fixed for all x ∈ Π. Since Σ is normal to en, it is essentially
a graph with ωn = h(ω′) := h(ω1, · · · , ωn−1) for some function h. The
volume form on Σ is

dvolΣ = Jdω1ω2 · · ·ωn−1

where J is the Jacobian det. Then,

Eφ(x) =

∫
Rn−1

e2πi(x1ω1+···+xn−1ωn−1) e2πith(ω′)φ(ω′)J(ω′)︸ ︷︷ ︸
g(ω′)

dω′

= ǧ(x)

Therefore,∫
Π

|Eφ|2 =

∫
Π

|ǧ|2 =

∫
Rn−1

|g|2 =

∫
Rn−1

J2|φ|2 ∼
∫
Rn−1

J |φ|2 =

∫
Σ

|φ|2dvolΣ

�

In particular, as t varies,
∫

Π
|Ejφ|2 does not change. In terms of

picture, this means the energy of Ejφ at each slice is roughly the same.

Corollary 0.7. If we have (E, φ) as above, then

‖Eφ‖L2(BR) . R1/2‖φ‖2
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Figure 4. Energy at different slices is almost the same

Proof.

LHS2 ≤
∫ R

−R
dt

∫
Π(t)

|Eφ|2 ∼
∫ R

−R
dt‖φ‖2

2 ∼ R‖φ‖2
2

�

Now we can compare Theorem 0.5 with our previous multi-linear
restriction theorem 0.1.

After working on multi-linear restriction theorem for a while, we
come back to restriction problem and see why the multi-linear version
might be helpful. Suppose Σ is the unit sphere or any other smooth
compact hyper-surfaces which is strictly convex in a quantitative way,
say, with all principle curvatures ∼ 1, then the conjecture is

Conjecture 0.8. For p = 2n
n−1

,

‖Eφ‖Lp(BR) . Rε‖φ‖Lp(Σ)

Remark 0.9. On RHS, one can put ‖φ‖Lq(Σ) for p ≤ q ≤ +∞ but not
for q < p. In the latter case, one can produce counterexample by using
a single wave packet.

In the multi-linear case, we have n functions and their images inter-
sect nicely. But now, we don’t necessarily have this picture.
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We decompose Σ =
⊔
τ into to K−1 caps with K ∼ log R being a

parameter and let A be the set of all caps. Then Eφ =
∑
Eφτ and∫

BR

|Eφ|p =

∫
BR

|
∑

Eφτ |p

=

∫
BR

n∏
j=1

|
∑
τ

Eφτ |p/n

≤ KO(1)
∑

τi∈A, 1≤i≤n

∫
BR

n∏
i=1

|Eφτi |p/n

At the last step, we used Hölder’s inequality and that explains the O(1)
power of K on the RHS (it is related to the number of caps). We are
at a situation to apply multi-linear restriction theorem if we can check
the angle condition holds:

Definition 0.10. A sequence of caps (τ1, · · · , τn) is called transverse if
there is a linear change of variables L with | det(L)| . KO(1) such that
Lτ1, · · · , Lτn obey hypothesis of multi-linear restriction theorem 0.5.

On Sn−1, (τ1, · · · , τn) is not transverse if and only if τ1, · · · , τn are
contained in an O(K−1)−neighborhood of equator. As an application
of multi-linear restriction theorem 0.5, we prove restriction theorem for
n = 2 and for Σ = S1.

Theorem 0.11.

‖Eφ‖L4(BR) . Rε‖φ‖L4(S1)

Proof. We decompose S1 =
⊔
τ into K−1 caps with K ∼ logR. The

number of caps is around K. Now for x ∈ BR, define

S(x) = {τ : |Eφτ (x)| ≥ 1

100K
|Eφ(x)|}

The set S(x) records caps that contribute non-trivially at x.

Observation. ∑
τ /∈S(x)

|Eφτ (x)| ≤ 1

10
|Eφ(x)|

This implies

|
∑
τ∈S(x)

Eφτ (x)| ∼ |Eφ(x)|

We call x is broad if we can find τ1, τ2 ∈ S(x) that (τ1, τ2) is trans-
verse. We call x is narrow if we cannot. The board part is easy to
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estimate due to multi-linear restriction theorem 0.5:∫
BR∩Broad

|Eφ|4 . (100K)4
∑

(τ1,τ2),transverse

∫
BR

|Eφτ1|2|Eφτ2|2

(Theorem 0.5) . RεKO(1)
∑

(τ1,τ2),transverse

‖φτ1‖2
2‖φτ2‖2

2

. RεKO(1)(
∑
‖φτ‖2

2)2

(Inverse local orthogonality) ∼ RεKO(1)‖φ‖4
L2(S1)

Figure 5. The equator, broad and narrow points

If x is narrow, since the equator is merely two points, |S(x)| . 1.
Therefore, by Hölder’s Inequality

(3) |Eφ(x)|4 ∼ |
∑
τ∈S(x)

Eφτ (x)|4 ≤
∑
τ∈S(x)

|Eφτ (x)|4

because there are not many terms in the summation. By integrating
(3) over the narrow part, we get∫

BR∩Narrow
|Eφ|4 .

∑
τ

∫
BR

|Eφτ |4

Remark 0.12. This inequality trivially holds if suppEφτ are disjoint.
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The remainder of the proof is based on induction on scales. By a
change of variables, we transform τ into the whole circle. In light of
decoupling, we define

Definition 0.13. We define C(R) to be the smallest number such that
for any surface Σ that satisfies the condition in Conjecture 0.8 and for
any smooth function φ ∈ C∞(Σ), the inequality

‖Eφ‖L4(BR) ≤ C(R)‖φ‖L4(Σ)

holds.

In terms of this definition, the goal of Theorem 0.11 is to show
C(R) ≤ C1R

ε for some C1 > 0.

Remark 0.14. C(R) is finite for all R > 0. In fact, it is easy to show
C(R) . RO(1).

Proof of remark.∫
BR

|Eφ|4 ≤ |BR|‖Eφ‖4
∞ ≤ |BR|‖φ‖4

1 ≤ |BR|‖φ‖4
4

At the last step, we used Hölder’s inequality and the fact that the size
of Σ is controlled by a constant. �

Lemma 0.15.

‖Eφτ‖L4(BR) . C(
R

K
)‖φτ‖4

Sketch of proof. Each τ is of size K−1 × K−2. By a linear change of
variables, we stretch these two direction respectively by K and K2

and get a new cap τ ′ of size 1 × 1. Now, ‖Eφτ‖L4(BR) is related to
‖Eφτ̃‖L4(BR/K). By the definition of function C(R),

‖Eφτ̃‖L4(BR/K) ≤ C(
R

K
)‖φτ̃‖4 ≤ ‖φτ‖4

�

One may wonder why we need a general linear change of variables,
instead of just rotations and dilation that preserve angles. The reason
is that dilation dilutes the curvature. In the assumption of conjecture
0.8, curvature is needed to be bounded below.
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Now apply our lemma to previous estimation for the narrow part:∫
BR∩Narrow

|Eφ|4 .
∑
τ

∫
BR

|Eφτ |4

. C(
R

K
)4(

∑
τ

‖φτ‖4
4)

= C(
R

K
)4‖φ‖4

4

Figure 6. The linear change of variables.

Finally, combining narrow and broad parts of BR, we obtain

C(R) . RεKO(1) + C(R/K)

By induction C(R/K) ≤ C1(R/K)ε and keep in mind that K ∼ log(R).
We expand the expression a little bit,

C(R) ≤ C2R
ε + C2C1(

R

K
)ε

No matter how large C1C2 is, since K →∞ as R→∞, we can assume
R is large enough such that C2C1K

−ε < 1. We also choose C1 = C2 +1,
then

C(R) ≤ C1R
ε

as desired. As for the base case of induction, we just need to start with
a large R0 and possibly choose C1 to be bigger. �

Let’s end with a few remarks for dimension 3. What will happen
there? Similar to the case in 2D, we can decompose S2 =

⊔
θ into

some K−1−caps. The number of caps is now around K2. For any
x ∈ BR, we find out all significant caps:

S(x) = {τ : |Eφτ (x)| ≥ 1

100K
|Eφ(x)|}
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We still have
|Eφ(x)| ∼ |

∑
τ∈S(x)

Eφτ (x)|

We call x is broad if there are τ1, τ2, τ3 ∈ S(x) that (τ1, τ2, τ3) is
transverse. The point x is called narrow if else. We can still get a
good bound on

∫
BR∩Broad

|Eφ|p by multi-linear restriction theorem.

However, for x ∈ BR narrow, we only know S(x) ⊂ O(K−1)−neighborhood
of an equator. It’s no longer true that |S(x)| . 1, which we used in
an essential way in inequality (3). In 3D, |S(x)| . K and Hölder’s
inequality will give us

|Eφ(x)|p ∼ |
∑
τ∈S(x)

Eφτ (x)|p ≤ |S(x)|p−1︸ ︷︷ ︸
Kp−1

∑
τ∈S(x)

|Eφτ (x)|p

This little power of K will destroy everything, since in the last part of
the proof for 2D, we used K−ε to compensate the large constant. But
we don’t have this profit any more.

Since S(x) is supported in an S1, it’s tempting to apply our result
in 2D and gain some control for the narrow part. But different narrow
points x may give many different equators and these equators overlap.
Finally, the method for 2D forgets cancellations near the point. There-
fore, it might be helpful to define significant caps for balls of radius R1/2

and we may gain by thinking about cancellations on that ball. That
will be the task for the next lecture.


