
18.118 DECOUPLING: LECTURE 3
DECOUPLING FOR THE PARABALOID I

INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY ROBERT BURKLUND

Let the parabaloid P be defined as follows:

P := {ω ∈ Rn : ωn = ω2
1 + · · ·+ ω2

n−1, |ω| ≤ 1}.
This is the piece of the standard parabaloid in Rn which is within 1 of
the origin. See figure 1. Now, let Ω = N1/RP be a neighborhood of
P of radius 1/R where R is some large parameter. This is the region
which we would like to cut up and prove a decoupling result for. In
particular we can cover Ω by rectangles θ so that

θ ≈ R−1/2 ×R−1/2 × · · ·R−1/2 ×R−1

Let Dp(R) := Dp(Ω = ∪θ) for this situation. Bourgain and Demeter
have proved a decoupling theorem for this situation the first part of
which we state below.

Theorem 0.1. If 2 ≤ p ≤ ps = 2n+1
n−1 , then Dp(R) . Rε.

1. Building Blocks

First we’ll investigate the case of a single wavepacket. This looks
like a bump function in phase space supported in one of the rectangles
θ. It will turn out that we can create sharp examples using a single
wavepacket from each θ. Because “typical examples” are constructed
from sums of (translations in real space of) wavepackets understanding
this example is a key step in the theorem.

Example 1.1. ψ̂θ is a smooth bump function of height 1 supported in
θ.

Choose some point ωθ at the center of θ. Then let θ∗ = {x ∈ Rn | ωθ+
1/x ∈ θ}.

θ∗ ≈ R1/2 ×R1/2 × · · ·R1/2 ×R1

See figure 2 for the 2d case. The drawing doesn’t convey this well,
but θ is a very small plate while θ∗ bears resembelance to a long skinny
tube.
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Lemma 1.2. |ψ̂θ| ∼ |θ| on θ∗ and then rapidly decaying.

sketch. First we reduce to the case of ωθ = 0.

|ψ̌θ(x)| = |
∫
e2πiωxψθ(ω)dω|

= |e2πiωθx
∫
e2πi(ω−ωθ)xψθ(ω)dω|

Note that if x ∈ (1/10)θ∗ then |(ω−ωθ)x| < 1/10 for all ω ∈ θ. Thus
there can be very little cancelation so |ψ̌θ(x)| ∼

∫
|ψθ| ∼ |θ|. If we’re

far from θ∗ then we expect lots of cancellation.
Concretely: integrate by parts many times and you’ll get rapid decay.

�

Remark 1.3. ψ̌θ looks like the function e2πiωθx|θ|χθ∗.

Using the fact that translations in real space have the same fourier
support we can build more examples out of ψ̌θ.

Example 1.4. ψ̌θ(x− x0) and
∑
akψ̌θ(x− xk).

At this point it’s important to recognize that examples of this type
are typical.

Lemma 1.5 (Locally Constant). Suppose Supp(f̂) ⊂ θ and T is some
translation of θ∗, then

‖f‖L∞(T ) . ‖f‖L−1(ωT )

with ωT ∼ 1 on T and rapidly decaying outside T .

The proof of this lemma will, for the most part, be a transcription
of the proof of the earlier locally constant lemma.

Proof. Let η be a bump function which is 1 on θ and decays rapidly
outside θ. Then f̂ = ηf̂ for support reasons which implies f = η̌ ∗ f .
Thus,

‖f‖L∞(T ) ≤ supx∈T

∫
|f(t)||η̌(x− t)|dx ≤

∫
|f(t)| sup

x∈T
|η̌(x− t)|dx

As analyzed earlier η̌(x) ∼ |θ| ∼ 1/|θ∗| on θ∗ and decays rapidly out-
side this range. Thus, supx∈T |η̌(x − t)| behaves similarly on T which
completes the proof. �

Example 1.6. Each fθ is a single wavepacket each of which is centered
at 0 all normalized so that fθ(0) = 1 (see figure 3).
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We would like to see what this example says about the value of the
decoupling constant. First we can compute f at 0 using the normal-
ization.

|f(0)| = #θ ∼ R
n−1
2 .

In a small neighborhood of 0 no significant cancellation can develop.
So, for say |x| < 1/10

|f(x)| ∼ R
n−1
2 .

Using this we can bound the Lp norm of f from below,

‖f‖Lp(Rn) ≥ ‖f‖Lp(B1) & R
n−1
2

Meanwhile our earlier analysis tells us about the Lp norm of each fθ,

‖fθ‖Lp(Rn) ∼ |θ∗|1/p ∼ (R ·R
n−1
2 )1/p = R

n+1
2p .(∑

θ

‖fθ‖2Lp(Rn)
)1/2

= (#θ)1/2R
n+1
2p = R

n−1
4

+n+1
2p .

From this example we see that

Dp(R) & R
n−1
4
−n+1

2p

The claim we’d like to prove is that up to a loss of Rε this example is
the worst that can happen.

Theorem 1.7 (Bourgain-Demeter).

Dp(R) . Rε ·max(R
n−1
4
−n+1

2p , 1).

It’s informative to look at a plot of logR(Dp(R)) vs. p (see figure 4).
From this we see that this result should be obtained from interpolation
between p = 2, p =∞ and p = 2n+1

n−1 . The first two of these are easy to
obtain and the line between them is the decoupling theorem we proved
last time (which holds in this setting as well).

Before we move forward with outlining the ideas we need to prove
the theorem we’ll first investigate how a couple other examples play
out.

Example 1.8. Consider the sum of N disjoint copies of example 1.5
(see figure 5).

If we let g represent example 1.7 and f represent example 1.5 then
because of the rapid decay outside θ∗ property we can see that

‖g‖Lp(Rn) ∼ N1/p‖f‖Lp(Rn) and ‖gθ‖Lp(Rn) ∼ N1/p‖fθ‖Lp(Rn)
From the equal scaling we can see that example 1.7 is sharp as well.

Example 1.9. Let n = 2 for simplicity. Consider hθ a sum of N
wavepackets in a row where N = R1/2 (see figure 6).
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From previous analysis |hθ| looks like the indicator function on a
rotated square of side length R.

Question 1.10. How much constructive interference can occur in this
situation?

First we look at how big h can get,

#θ = R1/2 |h| . R1/2

Now define the red set to be the set of points such that h(x) ∼ R1/2.
These are points of maximal constructive interference. In the figures
such points have been marked with red throughout. Using the decou-
pling theorem we can put a bound on the size of the red set.

|Red|(R1/2)6 . ‖h‖6L6(BR)
. Rε(

∑
‖hθ‖2L6(ωR)

)3

After some algebra this yields that |Red| . RεN . This is quite
sparse within a square of size N4, so our theorem will need to control
constructive interference of this type quite strongly.

Example 1.11. f =
∑N

j=1 e
2πi(jx1/N+j2x2/N2)

This example is the case of an exponential sum.

f(0) = N = R1/2

This same maximum is achieved on points (Na,N2b) for a, b integers.
In a radius R ball of the origin we see N = R1/2 points where this
maximum is achieved. Using just these points we can put a lower
bound on the Lp norm of f .

‖f‖Lp(BR) & R

This is because within 1/10 of (Na,N2b) no significant cancellation
can develop this contributes a R1/2 and there are at least R1/2 such
points. Meanwhile a quick computation yields that the RHS of the de-
coupling theorem is R1+1/(2p)+ε. This says that this example has room
to develop points of constructive interference that aren’t obviously vis-
ible.

2. A Sketch of the Proof Ideas

In order to get started on proving this theorem it’s useful to make
a table comparing the ingredients to the previous decoupling theorem
we proved.
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Decoupling for
∐N

i=1[i− 1, i] Decoupling for P

Local Orthogonality Local Orthogonality (next week)
Locally Constant Locally Constant (above)

Tiling R by [i− 1, i]’s Tiling of Rn by translations of θ∗

|fθ| ∼ constant on tiles |fθ| ∼ constant on tiles

In the previous theorem all the tiles were of the same type. In this
case each θ has it’s own tiling and they have nonzero angle between
them. It’s this and the idea of induction on scales that we will exploit
in order to prove this theorem.

If we pick a second and third scale S and T so that for example
fτ =

∑
θ⊂τ fθ then while the fourier space region got bigger the tiling

in real space gets smaller. Thus, while fθ only sees a flat region fτ will
need to see disjoint regions of higher value in order for an example,
f , to have too much constructive interference. However, each τ will
correspond to a different arrangements of tubes and each set of tubes
will have nonzero angle between them. In a certain sense it will be hard
for all these tubes to “cooperate” well enough to break our decoupling
theorem. See figures 7 and 8 for an illustration of this point.

Now that we’re thinking about cylinders in space cooperating with
each other there’s a well known problem that may give us the input we
need–the Kakeya problem.

Suppose Tj ⊂ Rn is a cylinder of radius 1 and length L such that Tj
point in the direction θj ∈ Sn−1 and the θj form a 1/L net of Sn−1.
Then #θj ≈ Ln−1.

Question 2.1 (Kakeya Problem). how large can ‖
∑

j χTj‖Lp(Rn) be?

This problem is quite a bit harder than it looks. An essential as-
pect of that hardness is that many variants of it one could produce by
changing the assumptions are false. Thus, a prospective proof must
use all of the given information in a precise manner.

Example 2.2. Let g denote the sum of characteristic functions corre-
sponding to when all of the cylinders are centered at 0.

With some computation one can see that g ∼ Ln−1 on B1, g > 1 on
BL and in between g ∼ (L/|x|)n−1. Kakeya’s max function conjecture
says that this example is the worst thing that can happen up to a Lε

loss.

Remark 2.3. Besicovitch constructed an example in which

| ∪ Tj| ∼
|Bn(L)|
log(L)

.
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Because of this decrease in volume one of the Lp norms must increase
correspondingly, so the Lε fudge factor is necessary.

This conjecture has been proven true for n = 2 and remains open for
n ≥ 3. Interestingly, our sitatuation only needs the weaker multilinear
Kakeya in order for us to make forward progress. We will discuss this
in the coming lectures.
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