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Last lecture, we showed that the decoupling constant for the moment
curve satisfies Dk,p(A) ≤ Aε for 2 ≤ p ≤ 4k − 2 where, as before,

Dk,p(A) =Dp(NA−k(Γk) = ⊔A−1arcs)

We will discuss how to extend this to the sharp range 2 ≤ p ≤ k(k + 1).
For simplicity we will focus on the case k = 3 and try to improve the
upper bound on p to 12. The goal of the lecture is to introduce all the
tools needed to prove the sharp estimate and to give some motivation
for each tool.

First we consider some examples to help build intuition. We will use
the term plank to denote an A ×A2 ×A3 box in a given direction. Let
fθ be the characteristic function of a plank passing through the origin
for each A−1 arc θ. Then f = ∑ fθ has value A in a unit ball around
the origin and thus we need

A ≲ ∣∣f ∣∣Lp ≲Dp(A)(A ⋅A
12
p ) 1

2 =Dp(A)A 1
2A

6
p

In particular, this example implies that p = 12 is the best we can do if
we hope to show a bound of the form Dk,p(A) ≤ Aε.

This example also gives us intuition as to why our proof for the non-
sharp range does not extend past p = 4k − 2. Note that in our proof,
we only looked at the planks inside balls of radius A2 and used the
fact that the fθ are locally constant on A × A2 × ⋯ × A2 slabs. If we
consider the example above and replace each plank with a slab, we can
still make the fθ sum to ≈ A on the unit ball. A similar computation
shows that we can only get to p ≤ 4k − 2 by using the locally constant
property on slabs.
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1. Multilinear Tools

Seeing the example above, we are motivated to develop a version of
Multilinear Kakeya for planks analogous to the one we used for slabs.

Essentially, we want a statement of the form
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where the gi are roughly constant on planks almost parallel to the
respective coordinate axes. Note we look at balls of size a3 since we
want to be able to see the whole plank. We show that the range of s
for which the above holds is 1 ≤ s ≤ 3

2 . We first show that the inequality
holds in the given range and then work out some examples.

Theorem 1.1. For 1 ≤ s ≤ 3
2 , if the gi are roughly constant on planks

parallel to the respective axes then we have
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Proof : We can break each plank into a × a × a3 tubes parallel to the
corresponding axis. We can now apply Multilinear Kakeya on the three
sets of tubes since they are parallel to the three coordinate axes and
get
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meaning that the inequality we want is true up to s = 3
2 .

We next show that the range in the above theorem is sharp. The
example we build is also based on the sharp example in Multilinear
Kakeya where all of the tubes intersect in a box. Indeed for a given
direction, we can stack together a planks of size a× a2 × a3 to get a fat
a2 × a2 × a3 tube. Now these fat tubes can intersect in an a2 × a2 × a2
box and a simple computation gives that the optimal exponent in this
example is 3

2 .
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Theorem 0.1 gives us the following estimate on the Multilinear de-
coupling constant for 2p

3 ≥ 2

Mp, 2p
3
(a, a) ≲Mp, 2p

3
(a3, a)

We can compare this to our estimate using slabs which is

Mp, p
3
(a, a) ≲Mp, p

3
(a2, a)

for p
3 ≥ 2. Note it is not clear that our new estimate is better since al-

though increasing r from a to a3 is better, it requires q to be 2p
3 instead

of just p
3 .

Furthermore, if we consider the optimal example described at the be-
ginning (with one plank through the origin in every direction), we can
show that our Multilinear Kakeya on planks is not tight. Note first that
if we have one plank parallel to every axis, the intersection is an a×a×a
box and thus the range for which the inequality holds is 1 ≤ s ≤ 2. The
case where there is one plank in every direction can be reduced to the
above case by clustering the planks around each of the axes. To keep
our estimates sharp, we will instead use Multilinear Kakeya on planks
only to go from r = a2 to r = a3. We claim

(MKP2) Mp, 2p
3
(a2, a) ≲Mp, 2p

3
(a3, a)

Proof. In the above (we will just show the case p = 3, 2p3 = 2), we have

LHS = AvgB(a3)⊂B(R)[AvgB(a2)⊂B(a3)∏(∑
θ

∣∣fi,θ∣∣2L2(Ba2)
) 1

2 ]

≲ AvgB(a3)⊂B(R)[∫
Ba3

(∏(∑
θ

∣∣fi,θ∣∣2L2(Ba2)
)) 1

2 ]

≲ AvgB(a3)⊂B(R)[∏(∫
Ba3

∑
θ

∣∣fi,θ∣∣2L2(Ba2)
)]

1
2

≲Mp, 2p
3
(a3, a)

where we used plank Kakeya and the fact that the gi = ∑θ ∣∣fi,θ∣∣2L2(Ba2)

are roughly constant on a2 × a2 × a3 boxes (since each fi,θ is roughly
constant on planks).

2. Reducing to Lower Dimensions

It turns out that we still need additional tools to prove the sharp
decoupling theorem on the moment curve. In this section we present a
set of tools that will allow us to use induction on dimension and com-
plete the proof.
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We will try to understand the following: let θ be A−1 arcs such that
for all θ, ∣fθ∣ ∼ 1 on a ball of radius A (denoted by BA). What can we

say about fτ on BA where τ are A−
1
3 arcs. From local orthogonality,

we have an estimate of the form

∣∣fτ ∣∣2L2(BA)
≲ ∑
θ⊂τ

∣∣fθ∣∣2L2(BA)

From 2-dimensional decoupling, we have that if Na−2(Γ2) = ⊔a−1arcs
then

(D2) ∣∣f ∣∣Lp(Ba2)
≲ aε(∑

θ

∣∣fθ∣∣2Lp(Ba2)
) 1

2

for 2 ≤ p ≤ 6. We claim that the exact same statement holds if we
consider 3 dimensional arcs.

Proof. We decompose the ball Ba2 into planes ∏h = {x3 = h} and
use two dimensional decoupling on each plane. We define the functions
gH(x1, x2) = f(x1, x2,H), gH,θ(x1, x2) = fθ(x1, x2,H) and decompose
gH = ∑ gH,θ. Note that the Fourier support of each gH,θ is contained
in the projection of θ onto the xy plane and thus the two dimensional
decoupling statement holds. We can then use parallel decoupling to
combine the slices.

We have that

∣∣fτ ∣∣2L6(BA)
≲ Aε( ∑

γ−A−
1
2 arcs

∣∣fγ ∣∣2L6(BA)
)

1
2

and also

∣∣fγ ∣∣2L2(BA)
≲ ∑
θ⊂γ

∣∣fθ∣∣2L2(BA)

3. Main Proof

We now list the set of all of our tools. We have from local orthogo-
nality and the reduction of dimension argument above,

(O) Mp,2(r, a) ≲Mp,2(r, r)

(D2) Mp,6(r, a) ≲Mp,6(r, r
1
2 )∀a ≤ r 1
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We also have from Multilinear Kakeya for slabs and planks

(MKS) Mp, p
3
(a, a) ≲Mp, p

3
(a2, a)

(MKP2) Mp, 2p
3
(a2, a) ≲ aεMp, 2p

3
(a3, a)

Combining these tools, we can complete the proof of the sharp decou-
pling estimate in a similar manner to the non-sharp one. We decompose
into broad and narrow balls and use multilinear tools in the broad case
and induction on dimension in the narrow case. We also use induction
to handle terms of the form Mp,p(r, a) as before. The details of the
algebra are omitted here.
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