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INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY SARAH TAMMEN

We resume our study of decoupling for the moment curve. We recall
that the moment curve Γk ⊂ Rk is defined as the image of [0, 1] under
the function

γ(t) = (t, t2, . . . , tk)

and that Dk,p(A) denotes the decoupling constant for a decomposition
of the A−k neighborhood of Γk into A−1 arcs. That is,

Dk,p(A) = Dp

(
NA−k(Γk) =

⊔
A−1arcs

)
.

Last time we stated the following two theorems, both due to Bourgain
and Demeter.

Theorem 0.1. For 2 ≤ p ≤ 4k − 2, we have that

Dk,p(A) . Aε.

Theorem 0.2. For 2 ≤ p ≤ k(k + 1), we have that

Dk,p(A) . Aε.

The exponent k(k + 1) in Theorem (0.2) is sharp.

Remark 0.3. We note that for k = 2, the upper bounds for p in the
non-sharp theorem and the sharp theorem coincide with each other and
also with the sharp exponent for decoupling on the paraboloid. This is
because for k = 2, the moment curve is a parabola.

Previously, we proved a broad/narrow decomposition that reduced
the proof of the weak decoupling theorem to a multilinear estimate.
Letting K � A, we wrote

f =
∑
τ

fτ =
∑
τ

∑
θ⊂τ

fτ,θ,

where each τ was a K−1 arc of the moment curve and each θ was an
A−1 arc. In the broad case, we claimed that if τ1, . . . , τk were transverse
K−1 arcs and fi = fτi , then

(1)

 k∏
i=1

|fi|
1
k
·p . Aε

( ∑
θ A−1-arcs

‖fθ‖2 Lp(BR)

) 1
2
·p

.

1
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(Strictly speaking, the RHS should actually involve norms with respect
to some weight ωBR

, but we will not belabor such details.)
Today we will prove this claim. To encapsulate some of the main

concepts in our proof, let

Mp,q(r, a) := Avg
Br⊂BR

k∏
i=1

( ∑
θ a−1-arcs

‖fi,θ‖2 Lp(Br)

) 1
2
· 1
k
·p

.

The expressions Mp,q satisfy the following properties:

(a) Orthogonality (O): If a ≤ r, then

Mp,2(r, a) ≤Mp,2(r, r).

(b) Multilinear Kakeya for Slabs, version 1 (MKS1):

M2k,2(a, a) .M2k,2(a
2, a).

(c) Multilinear Kakeya for Slabs, version 2 (MKS2): If p ≥ 2k, then

Mp, p
k
(a, a) .Mp, p

k
(a2, a).

(d) Mp,q(·, ·) is increasing in q.
(e) Hölder (H): If 1

q
= α

q1
+ 1−α

q2
, then

‖ · ‖q ≤ ‖ · ‖αq1‖ · ‖
1−α
q2

,

which implies that

Mp,q ≤ Mα
p,q1
M1−α

p,q2
.

To prove (1), we begin by observing that left-hand side satisfies

 k∏
i=1

|fi|
1
k
·p ∼Mp,q(1, 1).

because in the case that a = 1 and r = 1, the number of arcs θ is
∼ 1, and, also, the average over sub-balls disappears. (This holds for
any q ≥ 1 because of the locally constant property of the fi: each fi is
locally constant on balls of radius 1. When restricted to functions that
are locally constant on balls of radius 1, all Lq norms are comparable.)
Meanwhile,

Mp,p(R,A) =
k∏
i=1

( ∑
θ A−1-arcs

‖fi,θ‖2 Lp(BR)

) 1
2
· 1
k
·p

=

(
k∏
i=1

∑
θ A−1-arcs

‖fi,θ‖2 Lp(BR)

) 1
2
· 1
k
·p

(2)
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The p/2 root of Mp,p(R,A) is the geometric mean of the expression∑
θ A−1-arcs

‖fi,θ‖2 Lp(BR)

The p/2 root of the RHS of (1) is the sum over i of the same, and is
therefore at least as big. Thus, to prove (1) it suffices to prove that

(3) Mp,q(1, 1) . AεMp,p(R,A)

for some q.
This will get harder as p increases. We begin with the case that

p = 2k.

p = 2k case

Supposing that p = 2k, we will prove (3) for q = 2. Starting with
r = 1 and a = 1, we would like to increase r up to R and a up to A while
multiplying Mp,q(r, a) by a factor . Aε. Each of the properties (O),
(MKS1), and (MKS2) allows us to increase either r or a by squaring
one of the parameters, which suggests that we might be able to prove
(3) by repeatedly applying these moves in an appropriate sequence.
None of these moves do anything if we start at r = a = 1. However, if
we choose r0 > 1 to be very small relative to A, say r0 = Aδ, then we
have

M2k,2(1, 1),. rO(1)
o K2k,2(r0, r0).

Applying (MKS1) and then (O) gives

M2k,2(r0, r0)
(MKS1)

. M2k,2(r
2
0, r)

(O)

. M2k,2(r
2
0, r

2
0).

Iterating this procedure gives

M2k,2(r0, r0) . M2k,2(A,A).

From here, we apply Hölder to give

(4) M2k,2(r0, r0) .M2k,2k(A,A).

However, we want to show that

M2k,2(r0, r0) .M2k,2k(R,A).

To this end, we will use the following lemma, which says that Mp,p is
(weakly) monotonically increasing in r. The proof is similar in spirit
to our proof of parallel decoupling.
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Lemma 0.4. Given p, a, r1, and r2, with r1 ≤ r2, we have

Mp,p(r1, a) ≤Mp,p(r2, a).

Proof. Since r2 ≤ r1, we have that

Mp,p(r1, a) = Avg
Br2⊂BR

 Avg
Br1⊂Br2

∏
i

(∑
θ

‖fi,mθ‖2 Lp(Br1 )

) 1
2
· 1
k
·p


The expression in brackets satisfies

Avg
Br1⊂Br2

∏
i

(∑
θ

‖fi,θ‖2 Lp(Br1 )

) 1
2
· 1
k
·p

.
(Hölder)

∏
i

 Avg
Br1⊂Br2

(∑
θ

‖fi,θ‖2 Lp(Br1 )

) 1
2
·p


1
k

.
(Minkowski)

∏
i

(∑
θ

‖fi,θ‖2 Lp(Br1 )

) 1
2
· 1
k
·p

.

To elaborate on the Minkowski step, note that

Avg
Br1⊂Br2

(
(·)p/2

)
= ‖·‖ lp/2(Br2 )

,

where

‖ · ‖lp/2(Br2 )

is defined by a sum over ballsBr1 contained inBr2 . We apply Minkowski’s

inequality in lp/2 to the sum over θ to give

Avg
Br1⊂Br2

(∑
θ

‖fi,θ‖2 Lp(Br1 )

)p/2

=

∥∥∥∥∥∑
θ

‖fi,θ‖2 Lp(Br1 )

∥∥∥∥∥
p/2

 lp/2(Br2 )

≤

∑
θ

∥∥∥∥∥ ‖fi,θ‖2 Lp(Br1 )

∥∥∥∥∥
 lp/2(Br2 )

p/2

=

[∑
θ

‖fi,θ‖2 Lp(Br2 )

]p/2
.

�

Having proved Lemma 0.4, we resume from (4) to give

M2k,2(r0, r0) .M2k,2k(R,A).

This completes our proof of (3) in the case that p = 2k.
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p > 2k case

Supposing that p > 2k, we will prove (4) for q = 2. Again, if r0 = Aδ

for a sufficiently small δ (yet to be chosen), we have that

Mp,2(1, 1) . r
O(1)
0 Mp,2(r0, r0).

We use Hölder to bring 2 up to p/k so that we can apply (MKS2). This
gives

Mp,2(r0, r0) ≤ Mp, p
k
(r0, r0)

(MKS2)

. Mp, p
k
(r20, r0)

(H)

≤ Mp,2(r
2
0, r0)

αMp,p(r
2
0, r0)

1−α

=: Iα + II1−α,

(5)

where α is chosen to satisfy 1
p/k

= α
2

+ 1−α
p

. We analyze I and II

separately. Starting with I, we apply (O) and then Hölder to give

I = Mp,2(r
2
0, r0) . Mp,2(r

2
0, r

2
0)

≤ Mp,p(r
4
0, r

2
0)
α(1−α)Mp,2(r

4
0, r

2
0)
α2

.
(6)

Substituting this into (5) gives

Mp,2(r0, r0) .Mp,p(r
2
0, r0)

1−αMp,p(r
4
0, r

2
0)
α(1−α)Mp,2(r

4
0, r

2
0)
α2

.

We will repeat the sequence of moves from (6) many times. Supposing
that A = rs0, we have

Mp,2(r0, r0) .Mp,p(r
2
0, r0)

1−αMp,p(r
4
0, r

2
0)
α(1−α) Mp,p(r

8
0, r

4
0)
α2(1−α)Mp,2(r

8
0, r

4
0)
α4

. · · · .Mp,p(r
2
0, r0)

1−αMp,p(r
4
0, r

2
0)
α(1−α) Mp,p(r

8
0, r

4
0)
α2(1−α)

. . .Mp,p(A,A
1/2)α

s−2(1−α)Mp,2(A,A
1/2)α

s−1

Aside from the Mp,2(A,A
1/2)α

s−1
factor, there are s − 1 terms on the

RHS. Let

III = Mp,p(r
2
0, r0)

1−αMp,p(r
4
0, r

2
0)
α(1−α) . . .Mp,p(A,A

1/2)α
s−2(1−α).

After applying orthogonality one final time, we use the the fact that
Mp,q is increasing in q and then apply Lemma 0.4 to give

Mp,2(r0, r0) . III ·Mp,2(A,A
1/2)α

s−1

. III ·Mp,p(A,A)α
s−1

. III ·Mp,p(R,A)α
s−1

.
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Since s is large, the contribution of Mp,p(R,A)α
s−1

to the RHS is very
small.

To analyze III, we need a good way to estimate Mp,p(r, a). For this,
we will use induction on scales. Given r ≤ R and a ≤ A, we have that

Mp,p(r, a) .Mp,p(R, a) =
k∏
i=1

( ∑
θ a−1-arcs

‖fi,θ‖ Lp(BR)

) 1
2
· 1
k
·p

.

Each a−1 arc looks like the moment curve after an appropriate change
of variables. We cut each a−1 inverse arc into A−1 arcs. This gives

Mp,p(r, a) . Dk,p

(
A

a

) k∏
i=1

( ∑
θ A−1-arcs

‖fi,θ‖ Lp(BR)

) 1
2
· 1
k
·p

= Dk,p

(
A

a

)
Mp,p(R,A).

When we induct, we get that

III . Dk,p(A
1−δ)p(1−α)Dk,p(A

1−2δ)pα(1−α) . . . Dk,p(A
1/2)pα

s−2(1α)Mp,p(R,A).

Recall that we wanted to prove that

Mp,2(1, 1) . AεMp,p(R,A).

So far, we have proved that an estimate of the form

Mp,2(1, 1) . ACδDk,p(A
1−2δ)pα(1−α) . . . Dk,p(A

1/2)pα
s−2(1−α)Mp,p(R,A).

We note that δ is yet to be chosen. We can choose it depending on ε.
We have essentially proved that for small enough δ, we have

Dk,p(A) . Dk,p(A
1−2δ)pα(1−α) . . . Dk,p(A

1/2)pα
s−2(1α).

We want to show that Dk,p(A) . Aε. For this, we suppose as an
inductive hypothesis that

Dk,p

(
A1−δ) . (A1−δ)ε

and then expand out the RHS of the above recurrence. Some algebra
shows that the induction closes if and only if α ≥ 1/2. Recalling that
we defined α in our Hölder step, we deduce that α ≥ 1/2 if and only
if p ≤ 4k − 2. This completes the proof of the non-sharp decoupling
theorem.

One may ask why our argument gave the upper bound p ≤ 4k − 2
rather than the upper bound from the sharp decoupling theorem. We
recall that for a−1 caps θ, the functions fθ were locally constant on
‘planks’ of dimensions a×a2×a3×· · ·×ak. However, when we applied
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this fact to prove the two versions of Multilinear Kakeya for Slabs,
intersected balls of radius a2 with planks of these dimensions. The
intersection of an a × a2 × a3 × · · · × ak plank with a ball of radius
a2 is a slab of dimensions a × a2 × · · · × a2. Thus, we are really only
using the weaker statement that the functions fθ are locally constant
on planks of dimensions a× a2 × · · · × a2.


