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1. Decoupling for moment curve

Let us consider the moment curve Γk ⊂ Rk is defined to be

(t, t2, · · · , tk) for t ∈ [0, 1]

We want to study the decoupling for this curve, i.e. we want to study
the decoupling of

N(Γk) = tN(A−1-arcs)

where N denotes a suitable tubular neighborhood.
Let

Dp,k(A) := Dp(NA−k(Γk) = tN(A−1-arcs))

Later we will discuss about the choice of tubular radius A−k here. The
main purpose of the following classes is to show the following decoupling
theorem:

Theorem 1.1 (Bourgain-Demeter-Guth). If 2 ≤ p ≤ k(k + 1), then

Dk,p(A) . Aε

There is an old version of this theorem which need a stronger bound:

Theorem 1.2 (Bourgain-Demeter). If 2 ≤ p ≤ 4k − 2, then

Dk,p(A) . A6ε

As a corollary of the theorem, we can prove a conjecture by Vino-
gradov

Corollary 1.3. If f(x) =
∑A

a=1 e(xka
k + · · ·+ x1a), then

‖f‖Lp([0,1]k) . AεA
p
2

for 2 ≤ p ≤ k(k + 1)

Our goal is to show that if support of f̂ is in NA−k(Γk), then

‖f‖Lp . Aε(
∑
θ

‖fθ‖2Lp)
1
2

1
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here 2 ≤ p, and we will discuss about the sharp bound next time.
The main idea is following the broad/narrow estimate we used pre-

viously for the decoupling problem of paraboloid. Before that we first
study some property of moment curve.

1.1. Locally constant property. Suppose θ is an a−1-arc of the mo-
ment curve. More precisely, let

γ(t) = (t, t2, · · · , tk)
then we suppose θ is γ([t0, t0 + 1

a
]). By Taylor expansion, we have

γ(t) = γ(t0) + γ′(t0)∆t+
1

2
γ′′(t0)∆t

2 + · · ·+ 1

k!
γ(k)(t0)∆t

k +O(∆tk+1)

Note ∆tj is roughly scale of 1
aj

. Moreover, γ′(t0), γ
′′(t0), · · · , γ(k)(t0)

are transverse. Hence the arc θ lies in a box of scale 1
a
× 1

a2
× · · · × 1

ak
.

Remark 1.4. Here our moment curve is given by

(t, t2, · · · , tk)
What about other curves? for example

γ(t) = (t, t4, t100)

Actually the above analysis still holds if t is large, let’s say t ∈ [1
2
, 1].

So everything is the same.

So if fθ is a function such that the Fourier transform has support
in a tubular neighborhood of θ, fθ ∼ constant in the dual rectangle,
which is

a× a2 × · · · × ak

So in order to study the decoupling of moment curve, we want to
study the intersection of these rectangles in different directions. We
need something in the spirit of multilinear Kakeya.

1.2. Multilinear Kakeya for slabs. In previous classes we discussed
multilinear Kakeya problem for tubes. Here we want to discuss the
multilinear Kakeya for a new types of geometric objects: slabs. Slab is
the tubular neighborhood of a hyperplane, and we will call the twice of
the radius of this tubular neighborhood to be the thickness of the slab.

Let Si,j are characteristic functions of slabs of thickness 1 which
are almost parallel to hyperplane x⊥i . Let gi =

∑
j wi,jSi,j for some

constant wj ≥ 0.

Proposition 1.5.  
Qs

k∏
i=1

gi .
k∏
i=1

 
Qs

gi
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Proof. Actually we can show . is ∼.
First observe that for S1, · · · , Sk be slabs in different direction,

|S1 ∩ S2 ∩ · · · ∩ Sk| ∼ 1

Hence we haveˆ
Qs

∏
gi =

∑
j1,··· ,jk

wj1wj2 · · ·wjk
ˆ
S1,j1S2,j2 · · ·Sk,jk ∼

∏
i

(
∑
j

wi,j)

By averaging we get

 
Qs

k∏
i=1

gi ∼
k∏
i=1

 
Qs

gi

�

Later this multilinear Kakeya for slabs will replace classical multi-
linear Kakeya in the proof of decoupling for moment curves.

1.3. Analysis of width of tubular neighborhood. In the begin-
ning of this section, we define the decoupling constant Dk,p(A) for mo-
ment curve to be the decoupling constant of the tubular neighborhood

Dp(NA−k(Γ) = tA−1-caps)

Here we clarify why the width of tubular neighborhood is chosen to be
A−k.

Recall in previous decoupling problem of paraboloid, when we do
narrow estimate we need to analyze the decoupling in different scales.
In moment curve case, we want to do similar estimate, hence we also
need to study the moment curve in different scales.

Suppose τ is a K−1-arc of Γk, and θ is an A−1-arc of τ . Here we
assume A >> K. Now let us apply a linear change of variable, which
maps τ to be Γk and θ to be a (A

K
)−1-arc of Γk.

For example, if τ is γ([0, 1
K

]), then the linear change of coordinate
can be chosen to be

(w1, w2, · · · , wk)→ (Kw1, K
2w2, · · · , Kkwk)

So the linear change of coordinate would change the scale at most ∼
Kk. As a result under the linear change of coordinatesW -neighborhood
of τ would lie in KkW -neighborhood of Γk.

Assume W = W (A) = A−σ should be the width of tubular neighbor-
hood. Then after change of coordinates, A−σ-neighborhood of θ would
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lie in KkA−σ tubular neighborhood of (A
K

)−1-arc. If we want to get the
right scale, we need

KkA−σ ≥ W (
A

K
) = (

A

K
)−σ

Hence the right power σ = k. And this is the reason we pick A−k-
neighborhood at the beginning of this decoupling problem.

1.4. Broad and Narrow estimate. Now we can start proving the de-
coupling estimate (in non-sharp case). We will follow the broad/narrow
estimate we did for decoupling of paraboloid.

Let Γk = tτ which are K−1-arcs, here K << A. Let f =
∑

τ fτ .
Define

S(x) = {τ : |fτ (x)| ≥ 1

100(]τ)
|f(x)|}

which are those contribute most of |f(x)|.
We say x is broad if there exists τ1, · · · , τk ∈ S(x), such that τi’s

are well-separated, ; and the directions of the dual rectangles of them
transverse. Here we need an observation. For a ball with radius a2,
τ ∗ ∩B(a2) is roughly a a× a2× · · · × a2 slab. So we can say directions
for these rectangles, which are the direction of the slabs.

We say x is narrow else.
Narrow estimate:
First we observe that x narrow leads to |S(x)| . 1. In fact, if we

have too many elements in S(x), then we could pick many of them
such that they are separated away, and as a result, they will form a
well-separated set such that x belongs to Broad set. Soˆ

narrow
|f |p .

∑
τ

ˆ
|fτ |p

We want to bound each τ by induction. Let us follow the setting we
discussed in the analysis of width of tubular neighborhood, we get

ˆ
|fτ |p . Dp(

A

K
)p

 ∑
θ:A−1-arcs

‖fθ‖2Lp

 1
2

This is a good estimate we want.
Broad estimate:

ˆ
broad

|f |p .
∑

τ1,··· ,τk

ˆ k∏
i=1

|fτi |
1
k
p
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The right hand side term is in the form of multilinear expression, and
our goal is to show it is less or equal than

Aε(
∑

θ:A−1-arcs

‖fθ‖L2
avg

)
1
2
p

Now we want to do the two scale analysis we did previously. Define

Mp,q(r, a) := AvgBr⊂BR

k∏
i=1

 ∑
θ:A−1-arcs

‖fi,θ‖Lq
avg(Br)

 1
2

1
k
p

When r, a very small, Mp,q(r, a) is almost just the multilinear ex-
pression. When r, a very big, Mp,q(r, a) is the local expression we can
deal with. The main idea (follows previous ideas) is to build up some
induction process to connect these extreme cases.

Tool brainstorm: Let us review the tools we used in multilinear
Kakeya.

• Hölder inequality: If q1 ≤ q2, Mp,q1 ≤Mp,q2 ;
• Orthogonality: When q = 2, by using local orthogonality we

get if a ≤ r, Mp,2(r, a) .Mp,2(r, r);
• Multilinear Kakeya: We want to use slab version of multilinear

Kakeya.

Now we want to use multilinear Kakeya for slabs. First we need to
figure out what are Si,j, i.e. those slabs. Since |fi,θ| is almost a constant
on a× a2 × · · · × ak rectangle, so on Ba2 , |fi,θ| is almost a constant on
an a-neighborhood of a hyperplane, which is a slab.

Proposition 1.6. (1) M2k,2(a, a) .M2k,2(a
2, a)

(2) If p ≥ 2k, Mp, 2
k
(a, a) .Mp, p

k
(a2, a)
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