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Recall the setup from last time. We’re interested in the quantity

Rs,k,A(n) = #
{

(a1, . . . , as) ∈ [1, A] : ak1 + · · ·+ aks = n
}
.

The function f : Rk → C is defined by

f(x) =
A∑
a=1

e(akxk + · · ·+ ax1).

We showed over the last two classes that to estimate the size ofRs,k,A(n),
one thing we’d like to do is to bound |f(c)| where ck is Diophantine.
We proved that one could bound this by bounding∫

[0,1]k
|f(x)|p.

In particular we proved the following proposition.

Proposition 0.1. If for some p,∫
[0,1]k
|f(x)|p . AεAp−

k(k+1)
2 ,

then for ck Diophantine

|f(c)| . A1− 1
p+1

+ε.

The hypothesis of this proposition is true for all p ≥ k(k+1), proved
recently by both decoupling and another method of Trevor Wooley. In
this (mostly self-contained) lecture we’re going to prove the hypothesis
for p & k2 log k following the method of Vinogradov.

Theorem 0.2 (Vinogradov). For p & k2 log k an even integer,∫
[0,1]k
|f(x)|p . AεAp−

k(k+1)
2 .

By Proposition 0.1, this implies the following.
1
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Corollary 0.3. For ck Diophantine,

|f(c)| . A1−σ

where σ & 1
k2 log k

.

This was how Vinogradov proved his bounds on Rs,k(n).

Definition 0.4.

Js,k(A) = # {(a1, . . . , as, b1, . . . , bs) ∈ [1, A]2s :

ai1 + · · ·+ ais = bi1 + · · ·+ bis for all 1 ≤ i ≤ k
}
.

Js,k(A, ν) = # {(a1, . . . , as, b1, . . . , bs) ∈ [1, A]2s :

ai1 + · · ·+ ais = bi1 + · · ·+ bis + νi for all 1 ≤ i ≤ k
}
.

We sometimes use the notation

V =
{

(a1, . . . , as, b1, . . . , bs) ∈ N2s : ai1 + · · ·+ ais = bi1 + · · ·+ bis for all 1 ≤ i ≤ k
}
.

Recall from the very first lecture that for p = 2s an even integer∫
[0,1]k
|f(x)|2s = Js,k(A).

Thus our goal this lecture will be the following theorem of Vinogradov.

Theorem 0.5 (Vinogradov).

Js,k(A) . A2s− k(k+1)
2

+ε(s,k)

where ε(s, k) = e−s/k
2
k2.

Note that the above theorem does not restrict s, but is only interest-
ing for s ≥ 10k2 log k, say. The proof uses the following 3 tools. A good
reference for this lecture is Ten lectures on the interface between ana-
lytic number theory and harmonic analysis by Hugh L. Montgomery.

1. Geometric methods

The geometric properties of this problem are most apparent when
s = k. We’ll work with s = k here and deal with the rest of the
variables later.

Define φ : Rk → Rk by

φ(a1, . . . , ak) = (a1 + · · ·+ ak, a
2
1 + · · ·+ a2k, . . . , a

k
1 + · · ·+ akk).

Then it is easy to compute the Jacobian determinant of φ.

det

(
∂φj
∂ai

)
= det

(
jaj−1i

)
= k!

∏
i<j

(ai − aj).
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This is just a scaled version of the Vandermonde determinant.
This means that the Jacobian of φ is non-singular when the ai are

distinct and does not distort space too much when the ai are not close
to each other. This turns into a bound for “well-spaced” solutions to
a certain Diophantine equation.

Definition 1.1. (ã1, . . . , ãk) ∈ [0, 1]k is γ-well-spaced if |ai−aj| > γ
for i 6= j. Similarly (a1, . . . , ak) ∈ [1, A]k is γ-well-spaced if |ai−aj| >
γA for i 6= j.

Lemma 1.2. Let Ij be intervals such that |Ij| ≥ Aj−1. The number of

γ-well-spaced (a1, . . . , ak) ∈ [1, A]k such that aj1 + · · · + ajk ∈ Ij for all
1 ≤ j ≤ k is

.γ

k∏
j=1

(
|Ij|
Aj

)
Ak.

Proof sketch: First scale the problem as follows: ãi = ai/A and Ĩj =

Ij/A
j. Note that ãi ∈ [0, 1] and ãj1 + · · ·+ ãjk ∈ Ĩj.

Now the Jacobian determinant of φ at (ã1, . . . , ãk) is ∼γ 1 since the
point is γ-well-spaced. All the singular values of the Jacobian are . 1,
which implies that they are bounded below &γ 1.

The scaled version of the lattice [1, A]k is a set of 1
A

-separated points

in [0, 1]k. The γ-well-spaced points in this lattice turn into a ∼γ 1
A

-
separated set under φ.

This implies that at most
∏k

j=1 |Ĩj|Ak points lie in Ĩ1 × · · · × Ĩk, as

desired. (One way to see this is that the balls of radius c(γ)
2A

around the

points are disjoint and all lie in N c(γ)
2A

(Ĩ1 × · · · × Ĩk). Since |Ĩj| ≥ 1
A

,

taking this neighborhood does not increase the volume of the region by
more than a constant factor.) �

2. Hölderization

Given a combinatorial problem we can turn it into an integral using
Fourier analysis, use Hölder’s inequality, and then turn it back into a
(different) combinatorial problem. It turns out that this is sometimes
a useful thing to do.
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Proposition 2.1. Given positive integers ri, sets Si ⊂ Zri, and func-
tions Pi : Zri → Zk for 1 ≤ i ≤ 2t,

#

{
(a1, . . . , a2t) ∈ S1 × · · · × S2t :

2t∑
i=1

Pi(ai) = 0

}

≤
2t∏
i=1

(
#

{
ai1 , . . . , ait , bi1 , . . . , bit ∈ Si :

t∑
j=1

Pi(aij) =
t∑

j=1

Pi(bij)

}) 1
2t

.

Proof.

#

{
(a1, . . . , a2t) ∈ S1 × · · · × S2t :

2t∑
i=1

Pi(ai) = 0

}

=

∫
[0,1]k

2t∏
i=1

(∑
ai∈Si

e(Pi(ai)x)

)
dx

≤
2t∏
i=1

∫
[0,1]k

∣∣∣∣∣∑
ai∈si

e(Pi(ai)x)

∣∣∣∣∣
2t
 1

2t

≤
2t∏
i=1

(
#

{
ai1 , . . . , ait , bi1 , . . . , bit ∈ Si :

t∑
j=1

Pi(aij) =
t∑

j=1

Pi(bij)

}) 1
2t

.

�

Here is a simpler version of the same idea, which is used in the proof
of Theorem 0.5.

Proposition 2.2. Js,k(A, ν) ≤ Js,k(A).

Proof.

Js,k(A, ν) =

∫
[0,1]k

∣∣∣∣∣∣
∑
a∈[1,A]

e(x1a+ x2a
2 + · · ·+ xka

k)

∣∣∣∣∣∣
2s

e(νx) dx

≤
∫
[0,1]k

∣∣∣∣∣∣
∑
a∈[1,A]

e(x1a+ x2a
2 + · · ·+ xka

k)

∣∣∣∣∣∣
2s

dx

= Js,k(A).

�

Remark 2.3. Is there a proof of Proposition 2.1 without using this
‘Fourier trick’? There is for Proposition 2.2.

We’ll use another version of this idea in the proof of Theorem 0.5.
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3. Translation-dilation invariance

Proposition 3.1. (a1, . . . , as, b1, . . . , bs) ∈ V implies that (λa1+t, . . . , λas+
t, λb1 + t, . . . , λbs + t) ∈ V for all λ, t ∈ N.

Proof. All the equations that define V are homogeneous, so dilation is
obvious. Now suppose that ai1+ · · ·+ais = bi1+ · · ·+bis for all 1 ≤ i ≤ k.
Then for 1 ≤ j ≤ k, the equation

(a1 + t)j + · · ·+ (as + t)j = (b1 + t)j + · · ·+ (bs + t)j

is a linear combination of the previous equations. �

4. Proof of Theorem 0.5

Lemma 4.1.

#

{
(a1, . . . , ak, α1, . . . , αs−k, b1, . . . , bk, β1, . . . , βs−k) ∈ V ∩

(
[1, A]k × [1, A

k−1
k ](s−k)

)2
,

(a1, . . . , ak), (b1, . . . , bk) γ-well-spaced

}
.γ A

k−1
2 AkJs−k,k(A

k−1
k ).

Proof. There are fewer than Ak choices for b. After choosing b it is the

case that aj1 + · · ·+ ajk ∈ b
j
1 + · · ·+ bjk + [0, (s− k)A

k−1
k
j], an interval of

length O(Aj−
j
k ). By Lemma 1.2, there are at most A

k−1
2 choices for a

well-spaced after b is chosen. Then the number of choices for (α, β) is

given by Js−k,k(A
k−1
k , ν(a, b)) for νj(a, b) = aj1 + · · ·+ ajk− b

j
1− · · · − b

j
k.

By Proposition 2.2, the desired inequality follows. �

Remark 4.2. The above statement is true even without the assumption
that (b1, . . . , bk) is γ-well-spaced. Indeed, the proof does not make use
of this assumption. However, the symmetry between a and b will be
useful in the next lemma.

Lemma 4.3.

# {(a1, . . . , as, b1, . . . , bs) ∈ V ∩ [1, A]2s, (a1, . . . , ak), (b1, . . . , bk) γ-well-spaced
}

.γ
(
A

1
k

)2(s−k)
A

k−1
2 AkJs−k,k(A

k−1
k ).

Proof. Partition [1, A] =
⊔
I∈I I where each I ∈ I is an interval of

length A
k−1
k . Then the quantity we wish to compute is exactly∑

Ii,Jj∈I

# {(a1, . . . , ak, α1, . . . , αs−k, b1, . . . , bk, β1, . . . , βs−k) ∈ V ∩ [1, A]k

×I1 × · · · × Is−k × [1, A]k × J1 × · · · × Js−k, a, b γ-well-spaced
}
.
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Each term in the sum can be written as∫
[0,1]k

∣∣∣∣∣∣∣
∑

a∈[1,A]k

γ-well-spaced

k∏
i=1

e(φ(ai)x)

∣∣∣∣∣∣∣
2

s−k∏
i=1

( ∑
αi∈Ii,βi∈Ji

e(φ(αi)x)e(−φ(βi)x)

)
dx

≤
s−k∏
i=1

∫
[0,1]k

∣∣∣∣∣∣∣
∑

a∈[1,A]k

γ-well-spaced

k∏
i=1

e(φ(ai)x)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∑
αi∈Ii

e(φ(αi)x)

∣∣∣∣∣
2(s−k)

dx


1

2(s−k)

·
s−k∏
i=1

∫
[0,1]k

∣∣∣∣∣∣∣
∑

a∈[1,A]k

γ-well-spaced

k∏
i=1

e(φ(ai)x)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∑
βi∈Ji

e(φ(βi)x)

∣∣∣∣∣
2(s−k)

dx


1

2(s−k)

By Proposition 3.1, translation invariance, the right-hand side of the
above equation is equal to the left-hand side of Lemma 4.1. There are

A
1
k intervals in I so there are

(
A

1
k

)2(s−k)
terms in the sum. This gives

the desired bound in this lemma, which is
(
A

1
k

)2(s−k)
times the bound

in Lemma 4.1. �

Now we wish to study

Js,k(A) := #
{

(a1, ..., , as, b1, ..., bs) ∈ V ∩ [1, A]2s
}
.

The last lemma allows us to count the subset of these solutions where
(a1, ..., ak) and (b1, ..., bk) are γ-well spaced. If a definite fraction of the
solutions are well-spaced, then we get the inequality

Js,k(A) .γ
(
A

1
k

)2(s−k)
A

k−1
2 AkJs−k,k(A

k−1
k ). (WS)

We label this equation (WS) for the well-spaced case. For s − k ≥
k(k+ 1), this estimate is actually sharp! In other words, define J̄s,k(A)
to be the conjectured upper bound for Js,k(A):

J̄s,k(A) = max
(
As, A2s− k(k+1)

2

)
.

If s−k ≥ k(k+1), and if we replace Js,k by J̄s,k in inequality (WS), we
get an equality. Roughly speaking, if s ≥ k(k + 1), then we conjecture
that Js,k(A) ∼ Js,k(A, ν) for all ν = (ν1, ..., νk) with |νj| ≤ Aj. Assum-
ing this kind of pseudorandomness, we would expect the arguments
above to be tight. However, we do expect a loss when s ≥ k(k + 1)
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but s − k < k(k + 1), because then Js−k,k(A) is much bigger than
Js−k,k(A, ν) for most ν.

Assuming for a moment that we are always in the well-spaced case,
then we can iterate (WS) until s is close to k2 and finally plug in a

trivial estimate of the form Js′,k(A
′) ≤ (A′)2s

′
. Since A′ = A( k−1

k )
s/k

∼
Ae
−s/k2

, we get the desired result.
If the solutions in Js,k(A) are usually not well-spaced, the Holderiza-

tion trick leads to an even better iterative estimate:

Js,k(A) . γ−2(k−1)Js,k(γA) (NWS).

As long as γ is very small compared to the implicit constant, this is
a very strong estimate for Js,k. We sketch the proof of this estimate,
which is a good exercise in the techniques introduced in the lecture.
This reduction is also reminiscent of the broad/narrow trick that we
have studied in restriction theory.

Let W = Wγ ⊂ [1, A]s be the set of (a1, ..., as) ∈ [1, A]s so that some
k of the ai are γ-well-spaced. We can write

Js,k(A) = Js,k(W,W ) + 2Js,k(W,W
c) + Js,k(W

c,W c),

where, for instance,

Js,k(W,W
c) = # {(a, b) ∈ W ×W c, (a, b) ∈ V } .

The first term, Js,k(W,W ), counts the number of well-spaced solu-
tions, and it is controlled by Lemma 4.3. By Holderization, the mixed
term is controlled by the first and last terms. So if we are not in the
well-spaced case, then

Js,k(A) . Js,k(W
c,W c).

Now we cover [1...A] with intervals I of length γA. We can write W c

as

W c =
⋃

I1,...Is

W c ∩ (I1 × ...Is).

A priori, there are γ−s choices of I1, ...Is. ButW c intersects. γ−(k−1)

of these choices! Let N denote the set of all tuples I1, ..., Is so that
I1 × ...× Is intersects W c. Now we can write

Js,k(W
c,W c) ≤

∑
(I1,...Is)∈N,(J1,...,Js)∈N

Js,k(I1, ..., Is, J1, ..., Js),
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where

Js,k(I1, ..., Is, J1, ...Js) =

= # {(a1, ..., as, , b1, ..., bs) ∈ I1 × ...× Is × J1 × ...× Js, (a, b) ∈ V } .
By Holderization and translation invariance, each Js,k(I1, ...Is, J1, ...Js) ≤

Js,k(γA). Since the number of choices for the Ii and Ji is at most
|N |2 . γ−2(k−1), this shows (NWS).

In conclusion, we always have either (WS) or (NWS), and then a
simple induction computation shows that Vinogradov’s theorem holds.
In this induction computation, the (WS) case is the worst case.
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