18.118 DECOUPLING LECTURE 17 NOTES

INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY JONATHAN TIDOR

Recall the setup from last time. We're interested in the quantity

$$
R_{s, k, A}(n)=\#\left\{\left(a_{1}, \ldots, a_{s}\right) \in[1, A]: a_{1}^{k}+\cdots+a_{s}^{k}=n\right\} .
$$

The function $f: \mathbb{R}^{k} \rightarrow \mathbb{C}$ is defined by

$$
f(x)=\sum_{a=1}^{A} e\left(a^{k} x_{k}+\cdots+a x_{1}\right) .
$$

We showed over the last two classes that to estimate the size of $R_{s, k, A}(n)$, one thing we'd like to do is to bound $|f(\mathbf{c})|$ where c_{k} is Diophantine. We proved that one could bound this by bounding

$$
\int_{[0,1]^{k}}|f(x)|^{p}
$$

In particular we proved the following proposition.
Proposition 0.1. If for some p,

$$
\int_{[0,1]^{k}}|f(x)|^{p} \lesssim A^{\epsilon} A^{p-\frac{k(k+1)}{2}}
$$

then for c_{k} Diophantine

$$
|f(\mathbf{c})| \lesssim A^{1-\frac{1}{p+1}+\epsilon}
$$

The hypothesis of this proposition is true for all $p \geq k(k+1)$, proved recently by both decoupling and another method of Trevor Wooley. In this (mostly self-contained) lecture we're going to prove the hypothesis for $p \gtrsim k^{2} \log k$ following the method of Vinogradov.

Theorem 0.2 (Vinogradov). For $p \gtrsim k^{2} \log k$ an even integer,

$$
\int_{[0,1]^{k}}|f(x)|^{p} \lesssim A^{\epsilon} A^{p-\frac{k(k+1)}{2}}
$$

By Proposition 0.1, this implies the following.

Corollary 0.3. For c_{k} Diophantine,

$$
|f(\mathbf{c})| \lesssim A^{1-\sigma}
$$

where $\sigma \gtrsim \frac{1}{k^{2} \log k}$.
This was how Vinogradov proved his bounds on $R_{s, k}(n)$.

Definition 0.4.

$$
\begin{aligned}
& J_{s, k}(A)=\#\left\{\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}\right) \in[1, A]^{2 s}:\right. \\
& \left.\qquad a_{1}^{i}+\cdots+a_{s}^{i}=b_{1}^{i}+\cdots+b_{s}^{i} \text { for all } 1 \leq i \leq k\right\} \\
& J_{s, k}(A, \nu)=\#\left\{\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}\right) \in[1, A]^{2 s}:\right. \\
& \left.\qquad a_{1}^{i}+\cdots+a_{s}^{i}=b_{1}^{i}+\cdots+b_{s}^{i}+\nu_{i} \text { for all } 1 \leq i \leq k\right\} .
\end{aligned}
$$

We sometimes use the notation
$\mathbf{V}=\left\{\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}\right) \in \mathbb{N}^{2 s}: a_{1}^{i}+\cdots+a_{s}^{i}=b_{1}^{i}+\cdots+b_{s}^{i}\right.$ for all $\left.1 \leq i \leq k\right\}$.
Recall from the very first lecture that for $p=2 s$ an even integer

$$
\int_{[0,1]^{k}}|f(x)|^{2 s}=J_{s, k}(A)
$$

Thus our goal this lecture will be the following theorem of Vinogradov.
Theorem 0.5 (Vinogradov).

$$
J_{s, k}(A) \lesssim A^{2 s-\frac{k(k+1)}{2}+\varepsilon(s, k)}
$$

where $\varepsilon(s, k)=e^{-s / k^{2}} k^{2}$.
Note that the above theorem does not restrict s, but is only interesting for $s \geq 10 k^{2} \log k$, say. The proof uses the following 3 tools. A good reference for this lecture is Ten lectures on the interface between analytic number theory and harmonic analysis by Hugh L. Montgomery.

1. Geometric methods

The geometric properties of this problem are most apparent when $s=k$. We'll work with $s=k$ here and deal with the rest of the variables later.

Define $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by

$$
\phi\left(a_{1}, \ldots, a_{k}\right)=\left(a_{1}+\cdots+a_{k}, a_{1}^{2}+\cdots+a_{k}^{2}, \ldots, a_{1}^{k}+\cdots+a_{k}^{k}\right) .
$$

Then it is easy to compute the Jacobian determinant of ϕ.

$$
\operatorname{det}\left(\frac{\partial \phi_{j}}{\partial a_{i}}\right)=\operatorname{det}\left(j a_{i}^{j-1}\right)=k!\prod_{i<j}\left(a_{i}-a_{j}\right) .
$$

This is just a scaled version of the Vandermonde determinant.
This means that the Jacobian of ϕ is non-singular when the a_{i} are distinct and does not distort space too much when the a_{i} are not close to each other. This turns into a bound for "well-spaced" solutions to a certain Diophantine equation.

Definition 1.1. $\left(\tilde{a}_{1}, \ldots, \tilde{a}_{k}\right) \in[0,1]^{k}$ is γ-well-spaced if $\left|a_{i}-a_{j}\right|>\gamma$ for $i \neq j$. Similarly $\left(a_{1}, \ldots, a_{k}\right) \in[1, A]^{k}$ is γ-well-spaced if $\left|a_{i}-a_{j}\right|>$ γA for $i \neq j$.

Lemma 1.2. Let I_{j} be intervals such that $\left|I_{j}\right| \geq A^{j-1}$. The number of γ-well-spaced $\left(a_{1}, \ldots, a_{k}\right) \in[1, A]^{k}$ such that $a_{1}^{j}+\cdots+a_{k}^{j} \in I_{j}$ for all $1 \leq j \leq k$ is

$$
\lesssim_{\gamma} \prod_{j=1}^{k}\left(\frac{\left|I_{j}\right|}{A^{j}}\right) A^{k}
$$

Proof sketch: First scale the problem as follows: $\tilde{a}_{i}=a_{i} / A$ and $\tilde{I}_{j}=$ I_{j} / A^{j}. Note that $\tilde{a}_{i} \in[0,1]$ and $\tilde{a}_{1}^{j}+\cdots+\tilde{a}_{k}^{j} \in \tilde{I}_{j}$.

Now the Jacobian determinant of ϕ at $\left(\tilde{a}_{1}, \ldots, \tilde{a}_{k}\right)$ is $\sim_{\gamma} 1$ since the point is γ-well-spaced. All the singular values of the Jacobian are $\lesssim 1$, which implies that they are bounded below $\gtrsim_{\gamma} 1$.

The scaled version of the lattice $[1, A]^{k}$ is a set of $\frac{1}{A}$-separated points in $[0,1]^{k}$. The γ-well-spaced points in this lattice turn into a $\sim_{\gamma} \frac{1}{A}$ separated set under ϕ.

This implies that at most $\prod_{j=1}^{k}\left|\tilde{I}_{j}\right| A^{k}$ points lie in $\tilde{I}_{1} \times \cdots \times \tilde{I}_{k}$, as desired. (One way to see this is that the balls of radius $\frac{c(\gamma)}{2 A}$ around the points are disjoint and all lie in $N_{\frac{c(\gamma)}{2 A}}\left(\tilde{I}_{1} \times \cdots \times \tilde{I}_{k}\right)$. Since $\left|\tilde{I}_{j}\right| \geq \frac{1}{A}$, taking this neighborhood does not increase the volume of the region by more than a constant factor.)

2. HÖLDERIZATION

Given a combinatorial problem we can turn it into an integral using Fourier analysis, use Hölder's inequality, and then turn it back into a (different) combinatorial problem. It turns out that this is sometimes a useful thing to do.

Proposition 2.1. Given positive integers r_{i}, sets $S_{i} \subset \mathbb{Z}^{r_{i}}$, and functions $P_{i}: \mathbb{Z}^{r_{i}} \rightarrow \mathbb{Z}^{k}$ for $1 \leq i \leq 2 t$,

$$
\begin{aligned}
\#\left\{\left(a_{1}, \ldots, a_{2 t}\right)\right. & \left.\in S_{1} \times \cdots \times S_{2 t}: \sum_{i=1}^{2 t} P_{i}\left(a_{i}\right)=0\right\} \\
& \leq \prod_{i=1}^{2 t}\left(\#\left\{a_{i_{1}}, \ldots, a_{i_{t}}, b_{i_{1}}, \ldots, b_{i_{t}} \in S_{i}: \sum_{j=1}^{t} P_{i}\left(a_{i_{j}}\right)=\sum_{j=1}^{t} P_{i}\left(b_{i_{j}}\right)\right\}\right)^{\frac{1}{2 t}} .
\end{aligned}
$$

Proof.
$\#\left\{\left(a_{1}, \ldots, a_{2 t}\right) \in S_{1} \times \cdots \times S_{2 t}: \sum_{i=1}^{2 t} P_{i}\left(a_{i}\right)=0\right\}$
$=\int_{[0,1]^{k}} \prod_{i=1}^{2 t}\left(\sum_{a_{i} \in S_{i}} e\left(P_{i}\left(a_{i}\right) x\right)\right) d x$
$\leq \prod_{i=1}^{2 t}\left(\int_{[0,1]^{k}}\left|\sum_{a_{i} \in s_{i}} e\left(P_{i}\left(a_{i}\right) x\right)\right|^{2 t}\right)^{\frac{1}{2 t}}$
$\leq \prod_{i=1}^{2 t}\left(\#\left\{a_{i_{1}}, \ldots, a_{i_{t}}, b_{i_{1}}, \ldots, b_{i_{t}} \in S_{i}: \sum_{j=1}^{t} P_{i}\left(a_{i_{j}}\right)=\sum_{j=1}^{t} P_{i}\left(b_{i_{j}}\right)\right\}\right)^{\frac{1}{2 t}}$.

Here is a simpler version of the same idea, which is used in the proof of Theorem 0.5.
Proposition 2.2. $J_{s, k}(A, \nu) \leq J_{s, k}(A)$.
Proof.

$$
\begin{aligned}
J_{s, k}(A, \nu) & =\int_{[0,1]^{k}}\left|\sum_{a \in[1, A]} e\left(x_{1} a+x_{2} a^{2}+\cdots+x_{k} a^{k}\right)\right|^{2 s} e(\nu x) d x \\
& \leq \int_{[0,1]^{k}}\left|\sum_{a \in[1, A]} e\left(x_{1} a+x_{2} a^{2}+\cdots+x_{k} a^{k}\right)\right|^{2 s} d x \\
& =J_{s, k}(A) .
\end{aligned}
$$

Remark 2.3. Is there a proof of Proposition 2.1 without using this 'Fourier trick'? There is for Proposition 2.2.

We'll use another version of this idea in the proof of Theorem 0.5.

3. Translation-dilation invariance

Proposition 3.1. $\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}\right) \in \mathbf{V}$ implies that $\left(\lambda a_{1}+t, \ldots, \lambda a_{s}+\right.$ $\left.t, \lambda b_{1}+t, \ldots, \lambda b_{s}+t\right) \in \mathbf{V}$ for all $\lambda, t \in \mathbb{N}$.

Proof. All the equations that define \mathbf{V} are homogeneous, so dilation is obvious. Now suppose that $a_{1}^{i}+\cdots+a_{s}^{i}=b_{1}^{i}+\cdots+b_{s}^{i}$ for all $1 \leq i \leq k$. Then for $1 \leq j \leq k$, the equation

$$
\left(a_{1}+t\right)^{j}+\cdots+\left(a_{s}+t\right)^{j}=\left(b_{1}+t\right)^{j}+\cdots+\left(b_{s}+t\right)^{j}
$$

is a linear combination of the previous equations.

4. Proof of Theorem 0.5

Lemma 4.1.

$$
\begin{gathered}
\#\left\{\left(a_{1}, \ldots, a_{k}, \alpha_{1}, \ldots, \alpha_{s-k}, b_{1}, \ldots, b_{k}, \beta_{1}, \ldots, \beta_{s-k}\right) \in \mathbf{V} \cap\left([1, A]^{k} \times\left[1, A^{\frac{k-1}{k}}\right]^{(s-k)}\right)^{2},\right. \\
\left.\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right) \gamma \text {-well-spaced }\right\} \lesssim_{\gamma} A^{\frac{k-1}{2}} A^{k} J_{s-k, k}\left(A^{\frac{k-1}{k}}\right)
\end{gathered}
$$

Proof. There are fewer than A^{k} choices for b. After choosing b it is the case that $a_{1}^{j}+\cdots+a_{k}^{j} \in b_{1}^{j}+\cdots+b_{k}^{j}+\left[0,(s-k) A^{\frac{k-1}{k} j}\right]$, an interval of length $O\left(A^{j-\frac{j}{k}}\right)$. By Lemma 1.2, there are at most $A^{\frac{k-1}{2}}$ choices for a well-spaced after b is chosen. Then the number of choices for (α, β) is given by $J_{s-k, k}\left(A^{\frac{k-1}{k}}, \nu(a, b)\right)$ for $\nu_{j}(a, b)=a_{1}^{j}+\cdots+a_{k}^{j}-b_{1}^{j}-\cdots-b_{k}^{j}$. By Proposition 2.2, the desired inequality follows.

Remark 4.2. The above statement is true even without the assumption that $\left(b_{1}, \ldots, b_{k}\right)$ is γ-well-spaced. Indeed, the proof does not make use of this assumption. However, the symmetry between a and b will be useful in the next lemma.

Lemma 4.3.

$$
\begin{aligned}
\#\left\{\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}\right)\right. & \left.\in \mathbf{V} \cap[1, A]^{2 s},\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right) \gamma \text {-well-spaced }\right\} \\
& \lesssim_{\gamma}\left(A^{\frac{1}{k}}\right)^{2(s-k)} A^{\frac{k-1}{2}} A^{k} J_{s-k, k}\left(A^{\frac{k-1}{k}}\right)
\end{aligned}
$$

Proof. Partition $[1, A]=\bigsqcup_{I \in \mathcal{I}} I$ where each $I \in \mathcal{I}$ is an interval of length $A^{\frac{k-1}{k}}$. Then the quantity we wish to compute is exactly

$$
\begin{aligned}
\sum_{I_{i}, J_{j} \in \mathcal{I}} \#\left\{\left(a_{1}, \ldots, a_{k},\right.\right. & \left.\alpha_{1}, \ldots, \alpha_{s-k}, b_{1}, \ldots, b_{k}, \beta_{1}, \ldots, \beta_{s-k}\right) \in \mathbf{V} \cap[1, A]^{k} \\
& \left.\times I_{1} \times \cdots \times I_{s-k} \times[1, A]^{k} \times J_{1} \times \cdots \times J_{s-k}, a, b \gamma \text {-well-spaced }\right\}
\end{aligned}
$$

Each term in the sum can be written as

$$
\begin{aligned}
\int_{[0,1]^{k}} \mid & \left.\sum_{\substack{a \in[1, A]^{k} k \\
\gamma \text {-well-spaced }}} \prod_{i=1}^{k} e\left(\phi\left(a_{i}\right) x\right)\right|^{2} \prod_{i=1}^{s-k}\left(\sum_{\alpha_{i} \in I_{i}, \beta_{i} \in J_{i}} e\left(\phi\left(\alpha_{i}\right) x\right) e\left(-\phi\left(\beta_{i}\right) x\right)\right) d x \\
\leq & \prod_{i=1}^{s-k}\left(\int_{[0,1]^{k}}\left|\sum_{\substack{\in \in[1, A A \\
\gamma-\text {-well-spaced }}} \prod_{i=1}^{k} e\left(\phi\left(a_{i}\right) x\right)\right|^{2}\left|\sum_{\alpha_{i} \in I_{i}} e\left(\phi\left(\alpha_{i}\right) x\right)\right|^{2(s-k)} d x\right)^{\frac{1}{2(s-k)}} \\
& \cdot \prod_{i=1}^{s-k}\left(\int_{[0,1]^{k}}\left|\sum_{\substack{a \in[1, A]^{k} \\
\gamma-\text { well-spaced }}} \prod_{i=1}^{k} e\left(\phi\left(a_{i}\right) x\right)\right|^{2}\left|\sum_{\beta_{i} \in J_{i}} e\left(\phi\left(\beta_{i}\right) x\right)\right|^{2(s-k)} d x\right)^{\frac{1}{2(s-k)}}
\end{aligned}
$$

By Proposition 3.1, translation invariance, the right-hand side of the above equation is equal to the left-hand side of Lemma 4.1. There are $A^{\frac{1}{k}}$ intervals in \mathcal{I} so there are $\left(A^{\frac{1}{k}}\right)^{2(s-k)}$ terms in the sum. This gives the desired bound in this lemma, which is $\left(A^{\frac{1}{k}}\right)^{2(s-k)}$ times the bound in Lemma 4.1 .

Now we wish to study

$$
J_{s, k}(A):=\#\left\{\left(a_{1}, \ldots,, a_{s}, b_{1}, \ldots, b_{s}\right) \in V \cap[1, A]^{2 s}\right\} .
$$

The last lemma allows us to count the subset of these solutions where $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ are γ-well spaced. If a definite fraction of the solutions are well-spaced, then we get the inequality

$$
\begin{equation*}
J_{s, k}(A) \lesssim_{\gamma}\left(A^{\frac{1}{k}}\right)^{2(s-k)} A^{\frac{k-1}{2}} A^{k} J_{s-k, k}\left(A^{\frac{k-1}{k}}\right) \tag{WS}
\end{equation*}
$$

We label this equation $(W S)$ for the well-spaced case. For $s-k \geq$ $k(k+1)$, this estimate is actually sharp! In other words, define $\bar{J}_{s, k}(A)$ to be the conjectured upper bound for $J_{s, k}(A)$:

$$
\bar{J}_{s, k}(A)=\max \left(A^{s}, A^{2 s-\frac{k(k+1)}{2}}\right) .
$$

If $s-k \geq k(k+1)$, and if we replace $J_{s, k}$ by $\bar{J}_{s, k}$ in inequality $(W S)$, we get an equality. Roughly speaking, if $s \geq k(k+1)$, then we conjecture that $J_{s, k}(A) \sim J_{s, k}(A, \nu)$ for all $\nu=\left(\nu_{1}, \ldots, \nu_{k}\right)$ with $\left|\nu_{j}\right| \leq A^{j}$. Assuming this kind of pseudorandomness, we would expect the arguments above to be tight. However, we do expect a loss when $s \geq k(k+1)$
but $s-k<k(k+1)$, because then $J_{s-k, k}(A)$ is much bigger than $J_{s-k, k}(A, \nu)$ for most ν.

Assuming for a moment that we are always in the well-spaced case, then we can iterate $(W S)$ until s is close to k^{2} and finally plug in a trivial estimate of the form $J_{s^{\prime}, k}\left(A^{\prime}\right) \leq\left(A^{\prime}\right)^{2 s^{\prime}}$. Since $A^{\prime}=A^{\left(\frac{k-1}{k}\right)^{s / k}} \sim$ $A^{e^{-s / k^{2}}}$, we get the desired result.

If the solutions in $J_{s, k}(A)$ are usually not well-spaced, the Holderization trick leads to an even better iterative estimate:

$$
J_{s, k}(A) \lesssim \gamma^{-2(k-1)} J_{s, k}(\gamma A)
$$

(NWS).
As long as γ is very small compared to the implicit constant, this is a very strong estimate for $J_{s, k}$. We sketch the proof of this estimate, which is a good exercise in the techniques introduced in the lecture. This reduction is also reminiscent of the broad/narrow trick that we have studied in restriction theory.

Let $W=W_{\gamma} \subset[1, A]^{s}$ be the set of $\left(a_{1}, \ldots, a_{s}\right) \in[1, A]^{s}$ so that some k of the a_{i} are γ-well-spaced. We can write

$$
J_{s, k}(A)=J_{s, k}(W, W)+2 J_{s, k}\left(W, W^{c}\right)+J_{s, k}\left(W^{c}, W^{c}\right)
$$

where, for instance,

$$
J_{s, k}\left(W, W^{c}\right)=\#\left\{(a, b) \in W \times W^{c},(a, b) \in V\right\}
$$

The first term, $J_{s, k}(W, W)$, counts the number of well-spaced solutions, and it is controlled by Lemma 4.3. By Holderization, the mixed term is controlled by the first and last terms. So if we are not in the well-spaced case, then

$$
J_{s, k}(A) \lesssim J_{s, k}\left(W^{c}, W^{c}\right)
$$

Now we cover $[1 \ldots A]$ with intervals I of length γA. We can write W^{c} as

$$
W^{c}=\bigcup_{I_{1}, \ldots I_{s}} W^{c} \cap\left(I_{1} \times \ldots I_{s}\right)
$$

A priori, there are γ^{-s} choices of $I_{1}, \ldots I_{s}$. But W^{c} intersects $\lesssim \gamma^{-(k-1)}$ of these choices! Let N denote the set of all tuples I_{1}, \ldots, I_{s} so that $I_{1} \times \ldots \times I_{s}$ intersects W^{c}. Now we can write

$$
J_{s, k}\left(W^{c}, W^{c}\right) \leq \sum_{\left(I_{1}, \ldots I_{s}\right) \in N,\left(J_{1}, \ldots, J_{s}\right) \in N} J_{s, k}\left(I_{1}, \ldots, I_{s}, J_{1}, \ldots, J_{s}\right)
$$

where

$$
\begin{gathered}
J_{s, k}\left(I_{1}, \ldots, I_{s}, J_{1}, \ldots J_{s}\right)= \\
=\#\left\{\left(a_{1}, \ldots, a_{s},, b_{1}, \ldots, b_{s}\right) \in I_{1} \times \ldots \times I_{s} \times J_{1} \times \ldots \times J_{s},(a, b) \in V\right\} .
\end{gathered}
$$

By Holderization and translation invariance, each $J_{s, k}\left(I_{1}, \ldots I_{s}, J_{1}, \ldots J_{s}\right) \leq$ $J_{s, k}(\gamma A)$. Since the number of choices for the I_{i} and J_{i} is at most $|N|^{2} \lesssim \gamma^{-2(k-1)}$, this shows $(N W S)$.

In conclusion, we always have either $(W S)$ or $(N W S)$, and then a simple induction computation shows that Vinogradov's theorem holds. In this induction computation, the ($W S$) case is the worst case.

