18.118 DECOUPLING
LECTURE 17 NOTES

INSTRUCTOR: LARRY GUTH
TRANSCRIBED BY JONATHAN TIDOR

Recall the setup from last time. We're interested in the quantity
R .a(n #{al,...,as)e[1,A]:a’f+---+af:n}.
The function f: R¥ — C is defined by

Zea T+ -+ axy).

a=1

We showed over the last two classes that to estimate the size of Ry ; 4(n),
one thing we’d like to do is to bound |f(c)| where ¢, is Diophantine.
We proved that one could bound this by bounding

Aﬂuww

In particular we proved the following proposition.

Proposition 0.1. If for some p,

/'|<w<mm
[0,1]F

then for ¢, Diophantine

k(k+1)

[f(e)| S AT

The hypothesis of this proposition is true for all p > k(k+1), proved
recently by both decoupling and another method of Trevor Wooley. In
this (mostly self-contained) lecture we're going to prove the hypothesis
for p > k?log k following the method of Vinogradov.

Theorem 0.2 (Vinogradov). For p 2 k*logk an even integer,

| lap s aa
[0,1]%

By Proposition [0.1] this implies the following.
1

k(k+1)
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Corollary 0.3. For ¢, Diophantine,
[fle)l S A7
where o 2, m.
This was how Vinogradov proved his bounds on Ry x(n).
Definition 0.4.
Jop(A) = #{(ay,... a5 by,... b)) €[1,A]* :
aj 4+ +al =0+ -+ b foralll <i<k}.
Jop(Av) = #{(ar,... a5 b1,...,b,) € [1,A]* :
ai 4o Fal =04+ b+ foralll <i<k}.
We sometimes use the notation
V={(a1,...,a50b1,...,b) EN*:a{+ - +al=b 4+ foralll <i<k}.

Recall from the very first lecture that for p = 2s an even integer

[ @ = g,
[0,1]%
Thus our goal this lecture will be the following theorem of Vinogradov.
Theorem 0.5 (Vinogradov).
J, k;(A> < AZs—wﬁs(s,k)
where (s, k) = e~ 5/F k2.

Note that the above theorem does not restrict s, but is only interest-
ing for s > 10k?log k, say. The proof uses the following 3 tools. A good
reference for this lecture is Ten lectures on the interface between ana-
lytic number theory and harmonic analysis by Hugh L. Montgomery.

1. GEOMETRIC METHODS

The geometric properties of this problem are most apparent when
s = k. We'll work with s = k here and deal with the rest of the
variables later.
Define ¢: R¥ — R* by
k

olar,...,ax) = (a1 + - +ag,ai +---+aj,...,al + -+ af).
Then it is easy to compute the Jacobian determinant of ¢.

00, -
det ((9;21) = det (jal ') = k! H(ai — aj;).

1<j
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This is just a scaled version of the Vandermonde determinant.

This means that the Jacobian of ¢ is non-singular when the a; are
distinct and does not distort space too much when the a; are not close
to each other. This turns into a bound for “well-spaced” solutions to
a certain Diophantine equation.

Definition 1.1. (ay,...,ax) € [0,1]* is y-well-spaced if |a; —a;| > v
fori # j. Similarly (a1, . ..,ax) € [1, A]* is y-well-spaced if |a;—a;| >
YA fori # 7.

Lemma 1.2. Let I; be intervals such that |I;| > A=, The number of
v-well-spaced (ay,...,a;) € [1, A]F such that a + -+ al, € I; for all
1<) <kis

(1)
j k
”SVII(A_JJ')A'

=1

Proof sketch: First scale the problem as follows: a; = a;/A and jzj =
I;/A7. Note that a; € [0,1] and @] +--- +al € I,.

Now the Jacobian determinant of ¢ at (a1,...,a) is ~, 1 since the
point is y-well-spaced. All the singular values of the Jacobian are < 1,
which implies that they are bounded below 2., 1.

The scaled version of the lattice [1, A]* is a set of %—Separated points
in [0,1]*. The y-well-spaced points in this lattice turn into a ~, %-
separated set under ¢.

This implies that at most H;c:l |I;| A points lie in I, x --- x I, as

<)
24

points are disjoint and all lie in Ny (1:1 X oee X fk) Since |I~]| > %,

desired. (One way to see this is that the balls of radius around the

2A
taking this neighborhood does not increase the volume of the region by
more than a constant factor.) U

2. HOLDERIZATION

Given a combinatorial problem we can turn it into an integral using
Fourier analysis, use Holder’s inequality, and then turn it back into a
(different) combinatorial problem. It turns out that this is sometimes
a useful thing to do.
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Proposition 2.1. Given positive integers r;, sets S; C Z", and func-
tions P;: 7 — 7F for 1 < i < 2t,

2t
#{(al,...,azt) €Sy x - XSgt:ZH(ai)—O}
i=1

2t

t t 2t
<1] <# {aabb €81 Y Pia;) = ZPZ-(bij)}) :
j=1

i=1 Jj=1

Proof.

2t
#{(al,...,agt) €5 x - ><S2tZZPi(az‘):0}
=1

/ ﬁ(Ze(Pi(ai)x) da

k
[0,1]% 54 a;€S;

IA

> e(Pai)x)

a; €8,

2t
1=

(/..
t t 2t
(# {a,-l, - .,ait,bil,. . ~7bit € Sz : ZPZ(GNLJ) = sz(bz])}) .

1

Jj=1 J=1

IA

(2

Here is a simpler version of the same idea, which is used in the proof
of Theorem [0.5]

Proposition 2.2. J, (A, v) < Jsx(A).

Proof.
2s
Jsp(Av) = / Z e(r1a+ x9a® + -+ + 210") | e(vr)dx
[0,1]% a€(1,4]
2s
< / Z e(zia + 290® + - - + 2a")|  da
0.1 | 4e1,4)
= Js1(A).

O

Remark 2.3. Is there a proof of Proposition [2.1] without using this
‘Fourier trick’? There is for Proposition [2.2]

We'll use another version of this idea in the proof of Theorem [0.5]
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3. TRANSLATION-DILATION INVARIANCE

Proposition 3.1. (ay,...,as,b1,...,bs) € V implies that (Aai+t, ..., Aas+
t, Aoy + ..., bs+t) €V for all A\t € N.

Proof. All the equations that define V are homogeneous, so dilation is
obvious. Now suppose that af+---+a; = bj+---+b; forall 1 <i < k.
Then for 1 < j < k, the equation

(a1 +t) 4+ (as+ 1) = (by + )7 + -+ (bs + 1)’

is a linear combination of the previous equations. l

4. PROOF OF THEOREM [0.0

Lemma 4.1.

. 2
# {(ala ceey Qf, 07, ... 7as—kvb17‘ . 'abkuﬂla v 768—]6) evn <[17A]k X []-JAkT](S_k)) ;

k-1

(a1,...,ag), (b1, ..., bg) V-well-spaced} <S4 A%Akl]s_;%k(AT).

Proof. There are fewer than A* choices for b. After choosing b it is the
case that @] +---+al € bl +--- 4+ b +10, (s — k)A"F9], an interval of
length O(Aj*%). By Lemma , there are at most A"7 choices for a
well-spaced after b is chosen. Then the number of choices for (a, §) is

given by J,_ k(A% v(a,b)) for vi(a,b) = a4+ 4a, —b, —--—b.
By Proposition the desired inequality follows. O

Remark 4.2. The above statement is true even without the assumption
that (by,...,by) is y-well-spaced. Indeed, the proof does not make use
of this assumption. However, the symmetry between a and b will be
useful in the next lemma.

Lemma 4.3.

#{(a1,...,a50b1,...,b) € VN[, A*, (a1,...,a1), (by,... by fy—well—spaced}

k-1

< (Azif(s_k) AT AR (A,

~Y

Proof. Partition [1,A] = | |;.; I where each I € Z is an interval of
length A"F". Then the quantity we wish to compute is exactly

Z #{(ala"'aaka ala"'7a37k7b17"'7bk7617"'753*]6)evm[laA]k
I;,J;e1

XIp X oo X Ty X [LAF X Jp X oo X oy, a,b y-well-spaced}.
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Each term in the sum can be written as

/[Ol]k Z He(¢(ai)x) H( Z €(¢(ai)x)€(_¢(ﬂi>$)> du

a€[1,4]F  i=1 ai€1;,B:€J;

~-well-spaced

s—k 2 Q(ka) ﬁ
<11 / Y L@@ |3 e@aa)| — da
i=1 \YOIR | a1 ael;
~v-well-spaced
1
2 et
s—k 2(s—k)
T [ | X e | e i
i=1 [0,1]% ac[1,A)k  i=1 Bi€d;

~v-well-spaced

By Proposition [3.1] translation invariance, the right-hand side of the
above equation is equal to the left-hand side of Lemma 4.1} There are

2(s—k)
A¥ intervals in Z so there are <A%) terms in the sum. This gives

2(s—k)
the desired bound in this lemma, which is <A%> times the bound
in Lemma [4.11 O

Now we wish to study

Jok(A) := # {(a1, ., a5, by, ., bs) € V[T, A}

The last lemma allows us to count the subset of these solutions where
(a1, ...,ax) and (by, ..., by) are y-well spaced. If a definite fraction of the
solutions are well-spaced, then we get the inequality

2(s—k) —1 —1
Ton(A) <, (A%> AT AR T (A, (WS)
We label this equation (WW.S) for the well-spaced case. For s — &k >
k(k+ 1), this estimate is actually sharp! In other words, define J;x(A)
to be the conjectured upper bound for Js ,(A):

J,x(A) = max <AS, AQS*%) .

If s—k > k(k+1), and if we replace J, by J,, in inequality (W.S), we
get an equality. Roughly speaking, if s > k(k + 1), then we conjecture
that Js,(A) ~ Jsx(A,v) for all v = (14, ..., 1) with |y;| < AJ. Assum-
ing this kind of pseudorandomness, we would expect the arguments
above to be tight. However, we do expect a loss when s > k(k + 1)
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but s — k < k(k + 1), because then Js_j;(A) is much bigger than
Js—1.x(A,v) for most v.
Assuming for a moment that we are always in the well-spaced case,

then we can iterate (TW.S) until s is close to k? and finally plug in a

, _1\s/k
trivial estimate of the form Jy (A4’) < (A")*". Since A’ = Al

—8 2 .
A" we get the desired result.

If the solutions in J, ;(A) are usually not well-spaced, the Holderiza-
tion trick leads to an even better iterative estimate:

Y

Jor(A) S 7770V Ik (vA) (NWS).

As long as + is very small compared to the implicit constant, this is
a very strong estimate for J ;. We sketch the proof of this estimate,
which is a good exercise in the techniques introduced in the lecture.
This reduction is also reminiscent of the broad/narrow trick that we
have studied in restriction theory.

Let W =W, C [1, A]® be the set of (a4, ..., as) € [1, A]® so that some
k of the a; are y-well-spaced. We can write

Js,k(A> = Js,k(vva W) + 2Js,k<W7 WC) + Js,k(Wca Wc)a

where, for instance,

JS,k‘<W7 WC) =# {(a7b) eEW x W¢, <a7 b) € V}

The first term, J, (W, W), counts the number of well-spaced solu-
tions, and it is controlled by Lemma [4.3] By Holderization, the mixed
term is controlled by the first and last terms. So if we are not in the
well-spaced case, then

Jsk(A) S Js (W, WE).

Now we cover [1...A] with intervals I of length yA. We can write W¢
as

We = Wcﬁ(ll X ]S)
I,..Is

A priori, there are y~° choices of I}, ...I,. But W€ intersects < y~*~1)
of these choices! Let IV denote the set of all tuples I, ..., I, so that

I, x ... x I, intersects W°. Now we can write

Jox(We, W) < > Jor(Dy oo Iy J1s oy J),

(Il,..‘IS)EN,(JL..A,JS)GN
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where

Js,k([la ...,Is, Jl; Js) =

=#{(ay,...,as,,b1,....;05) € I} X ... x [{ x Jy X ... X Jg, (a,b) € V}.

By Holderization and translation invariance, each Js (11, ... L5, Ji, ... J5) <
Jsk(vA). Since the number of choices for the [; and J; is at most
|N|? < 4~2k=D this shows (NWS).

In conclusion, we always have either (WS) or (NWS), and then a
simple induction computation shows that Vinogradov’s theorem holds.

In this induction computation, the (W.S) case is the worst case.
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