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1. Loose Ends

Define a quantity

Mp,q(r, σ) = Avg
Br⊂BR

n∏
j=1

 ∑
θ:σ−1−caps

‖fj,θ‖2
LqAvg(Br)

 1
2np

.

Last lecture, we stated two inequalities coming from multilinear Kakeya:
the first is

M 2n
n−1

,2(r, r) . rεM 2n
n−1

,2(r2, r). MK1

If q = n−1
n
· p ≥ 2, the second more general inequality is

Mp,q(r, r) . rεMp,q(r
2, r). MK2

We proved MK1 last lecture, and our first loose end is to prove MK2.
Our starting point is the following form of the multi-linear Kakeya in-
equality: for gj =

∑
a ωj,aTj,a, where ωj,a ≥ 0 and Tj,a are characteristic

functions of tubes almost parallel to the j’th axis, then

−
∫

QS

n∏
j=1

g
1

n−1

j . Sε
n∏
j=1

(
−
∫
gj

) 1
n−1

MK.

2. Proving MK2

The left-hand-side of MK2 equals

Avg
Br2⊂BR

 Avg
Br⊂Br2

n∏
j=1

 ∑
θ:r−1−caps

‖fj,θ‖2
LqAvg(Br)

 1
2np

 .
Notice that |fj,θ| is approximately a constant on any tube almost per-
pendicular to the direction of θ, of radius r and length r2. With this
observation, define function Fj,θ(x) := ‖fj,θ‖LqAvg(Br)χBr(x). Then the
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quantity within the averaging sign on the left-hand-side of MK2 is es-
timated as follows: with Nj = #θ ⊂ Ωj,

−
∫

Br2

n∏
j=1

(∑
θ

F 2
j,θ

) 1
2np

Hölder

≤ −
∫

Br2

n∏
j=1

(∑
θ

F q
j,θ

) 1
qnp n∏

j=1

N
( 1
2
− 1
q )

p
n

j

MK

. rε
n∏
j=1

(
−
∫

Br2

∑
θ

F q
j,θ

) 1
qnp n∏

j=1

N
( 1
2
− 1
q )

p
n

j

≤ rε
n∏
j=1

(∑
θ

‖fj,θ‖qLqAvg(Br2 )

) 1
qnp n∏

j=1

N
( 1
2
− 1
q )

p
n

j .

The desired inequality is(∑
θ

‖fj,θ‖qLqAvg(Br2 )

) 1
q

N
1
2
− 1
q

j .

(∑
θ

‖fj,θ‖2
LqAvg(Br2 )

) 1
2

.

However, the Hölder inequality gives the reverse, and the desired in-
equality holds only if, for each j, the quantity ‖fj,θ‖LqAvg(Br2 ) is approx-

imately constant in θ.
In order to overcome this obstacle, let us introduce a classification

of the caps θ: for λ dyadic, define a family

Θi,λ :=
{
θ : λ/2 ≤ ‖fj,θ‖LqAvg(Br2 ) ≤ 2λ

}
.

Write Nj,λ = |Θj,λ|. Notice that for λ+
j := max{λ : Nj,λ ≥ 1},∑

λ≤r−100nλ+j
θ∈Θj,λ

‖fj,θ‖LqAvg(Br2 ) �
∑

θ∈Θ
j,λ+
j

‖fj,θ‖LqAvg(Br2 ).

Consequently, only those λ’s such that r−100nλ+
j ≤ λ ≤ λ+

j , i.e., those
λ’s which are comparable to log r, make the major contribution to the
sum ∑

θ

‖fj,θ‖qLqAvg(Br2 )
=
∑
λ

∑
θ∈Θj,λ

‖fj,θ‖qLqAvg(Br2 )
.

So the quantity inside the averaging sign one left-hand-side of MK2
is controlled as follows: by the reverse Hölder inequality (for exponents
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which are ≤ 1),

... ≤ (log r)O(1) max
λ1,··· ,λn

 Avg
Br⊂Br2

n∏
j=1

 ∑
θ∈Θj,λj

‖fj,θ‖qLqAvg(Br)

 1
2np


≤ (log r)O(1)rε max

λ1,··· ,λn

n∏
j=1

 ∑
θ∈Θj,λj

‖fj,θ‖qLqAvg(Br)

 1
2np

.

And this is comparable to the desired right-hand-side of MK2.

3. How to Summarize this Section...?

Theorem 3.1. For p = 2(n+1)
n−1

, given any ε > 0, there is an R0 = R0(ε)
such that if R ≥ R0, then

Dp,n(R) ≤ Rε.

We shall use a recurrence scheme to prove this theorem. For any nat-
ural number s, let δ = 2−s. An iteration of the broad-narrow argument
gives

Dp,n(R) . KO(1)Dp(R
1−2δ)1/2 · · ·Dp(R

1/2)1/2s−1

RO(δ)

+Dp,n−1(K2)Dp,n(R/K2),

where the first term corresponds to the broad part, and the second the
narrow part.

In order to gain some intuition on deriving theorem 3.1 from this
recurrence relation, let us focus on simpler recurrences first. Let G be
a non-negative non-decreasing function such that for all R > 0,

G(R) ≤ CG(R1/2)3/2

for some constant C > 0. Put r = logR and g(r) = logG(er). Then
one derives, for c = logC,

g(r) ≤ 3

2
g
(r

2

)
+ c

≤
(

3

2

)2

g
(r

4

)
+ 2c ≤ · · ·

≤
(

3

2

)log2 r

g(r′) + c log2 r

≤ c1

(
3

2

)log2 r

+ c log2 r,
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where the inequality is iterated for so many times that 1 ≤ r′ ≤ 2.
Consequently,

g(r) .

(
3

2

)log2 r

,

or

G(R) . exp
(
C(logR)

log 3−log 2
log 2

)
. Rε.

A more complicated example for simple iteration:

Proposition 3.2. Similar general assumption on G as above. If it is
such that

G(R) ≤ CR1/100G(R1/2)3/2,

then
G(R) . R1/25+ε.

Note that if one assumes G(R) ∼ Rp, then this is possible if and only
if p ≤ 1/25.

Proof of proposition 3.2. Still take logarithm and iterate the inequality.
Put r = logR, g(r) = logG(er). Then iterating,

g(r) ≤ r

100
+

3

2
g
(r

2

)
+ c

≤ r

100
+

3

4

r

100
+

(
3

2

)2

g
(r

4

)
+ 2c ≤ · · ·

≤ r

100

(
1 +

3

4
+

(
3

4

)2

+ · · ·

)
+

(
3

2

)log2 r

g(r′) + c log2 r

≤ r

25
+

(
3

2

)log2 r

g(r′) + c log2 r,

where 1 ≤ r′ ≤ 2. This is the desired result. �

Now we turn to multi-recurrences. The relation is

G(R) ≤ CRγ
∏
i

G(Rαi)βi .

Proposition 3.3. Under this assumption,

G(R) .ε R
γ

1−
∑
i αiβi

+ε
.

Note that if one assumes G(R) ∼ Rp, then this is possible if and only
if

p ≤ γ

1−
∑

i αiβi
.

Proposition 3.3 is proved in a similar way as proposition 3.2.
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For the concrete case of decoupling constant Dp,n(R), if the broad
part dominates, then

Dp,n(R) . KO(1)Dp(R
1−2δ)1/2 · · ·Dp(R

1/2)1/2s−1

RO(δ).

Here, γ = Cδ, αi = 1− 2iδ, βi = 1/2i, so

R
γ

1−
∑
i αiβi

+ε
= Rc/s+ε.

By proposition 3.3, this quantity controls the decoupling constantDp,n(R).
For fixed ε, the proof is finished if one takes s > 1/ε. Hence, the

number R0 can be taken as

R0 ≥ 102s ≥ 102ε
−1

.


