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1. Multi-scale language

Last time we examined the non sharp decoupling theorem proven
by Bourgain. In the following two lectures, we aim to prove the full
decoupling theorem.

Theorem 1.1 (Bourgain-Demeter). Dp,n(R) . Rε for 2 ≤ p ≤ 2(n+1)
n−1

.

We begin by a diagonosis of the proof of non sharp decoupling the-
orem (for p up to 2n

n−1
).

• In the broad case, we used Multilinear Restriction.
• The multilinear Restriction theorem uses transversality at scale

about 1.
• We need to use transversality at many angular scales even for

broad case.
• We can do it by decoupling smaller caps Dp(τ = tθ) which

involves transversality at any scale below τ .

We define a notation that captures all the information that we are
trying to pass from one scale to another.

(1) Mp.q(r, σ) := Avg
Br⊆BR

Πn
j=1(

∑
θ⊆Ωj :σ−1−cap

‖fj,θ‖2
Lq
avg(Br))

1
2
· 1
n
·p

Let’s digest the notation. In Fourier space, Ωj’s are transversal pieces
of paraboloids. We consider σ−1–caps in each Ωj. In physical space, for
example when σ = r1/2 (which is an important case for us), we divide
BR into finitely overlapping union of balls Br, inside each Br fj,θ is
roughly constant on r1/2× r–tubes pointing on the normal direction of
θ.

The following two examples of Mp,q(r, σ) are important special cases.

(2) Mp,q(1, 1) = Avg
B1⊆BR

Πn
j=1‖fj‖

1
n
·p

Lq
avg(B1)

∼
∮
BR

Πn
j=1|fj|

p
n

1
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By locally constant property, |fj| is about constant on B1.

Πn
j=1‖fj‖

1
n
·p

Lq
avg(B1)

∼ Πj=1|fj|
1
n
·p ∼

∮
B1

Πj=1|fj|
1
n
·p.

Mp,q(1, 1) is the left-hand side of multilinear decoupling inequality.

(3) Mp,p(R,R
1/2) = Πn

j=1(
∑

θ:R−1/2−cap

‖fj,θ‖2
Lq
avg(BR))

1
2
· 1
n
·p

We can drop the average since we only have one ball BR, inside the
product we sum over caps of radius R−1/2, which is the right-hand side
of multilinear decoupling inequality.

We would like to go from Mp,q(1, 1) to Mp,p(R,R
1/2) by increasing

the r and σ.

2. Tools

We write the main tools in Mp,q(r, σ) language and see how the tools
enable us to grow r and σ.

• O = Orthogonality: If σ ≤ r, then Mp,2(r, σ) .Mp,2(r, r).
• MK = Multilinear Kakeya: If r ≤ R1/2, then Mp,2(r, r) .
rεMp,2(r2, r) for p = 2n

n−1
.

• H = Hölder’s inequality: If q1 ≤ q2, thenMp,q1(r, σ) ≤Mp,q2(r, σ).
• H2 = Hölder’s inequality 2: If ‖fj,θ‖Lq

avg(Br) ≤ ‖fj,θ‖α1

L
q1
avg(Br)

‖fj,θ‖α2

L
q2
avg(Br)

,

then Mp,q(r, σ) ≤Mp,q1(r, σ)α1Mp,q2(r, σ)α2 .

Lemma 2.1.

Mp,p(r, σ) ≤ D(
R

σ2
)pMp,p(R,R

1/2).

Lemma 2.1 is a combination of parallel decoupling and parabolic rescal-
ing which enables us to do induction on scale.

Proof of O. If τ is σ−1–cap, and τ can be decomposed as disjoint union
of r−1–cap: τ = tθ, then

‖fj,τ‖2
L2
avg(Br) .

∑
θ⊆τ

‖fj,θ‖2
L2
avg(Br).

We plug the above orthogonality inequality into the definition ofMp,2(r, σ).
�

Proof of MK. Recall that if gj =
∑

aWj,aTj,a, with Wj,a ≥ 0 and Tj,a
being the characteristic function of cylinder of radius 1 pointing on a
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direction near ej, then∮
QS

Πn
j=1g

1
n−1

j . SεΠn
j=1(

∮
QS

gj)
1

n−1 .

We decompose the average over Br ⊆ BR into two steps: Avg
Br2⊆BR

Avg
Br⊆Br2

.

Br2 is the scale where multilinear kakeya is going to happen. We take
gj(x) =

∑
θ ‖fj,θ‖2

L2
avg(Br) for x ∈ Br. By locally constant property, |fj,θ|

is roughly constant on a r × r2–tube, so gj(x) is a sum of r × r2-tubes
pointing on direction near the normal direction of Σj with positive
weights (value of |fj,θ|).

Mp,2(r, r) = Avg
Br2⊆BR

[
Avg
Br⊆Br2

Πn
j=1(

∑
θ

‖fj,θ‖2
L2
avg(Br))

1
2
· 1
n
·p
]

. Avg
Br2⊆BR

rεΠn
j=1(

∮
Br2

gj)
1

n−1

. rε Avg
Br2⊆BR

Πn
j=1(

∑
θ

‖fj,θ‖2
L2
avg(Br2 ))

1
2
· 1
n
·p

= rεMp,2(r2, r)

Here p = 2n
n−1

, we have 1
2
· 1
n
· p = 1

n−1
, which satisfies the condition of

multilinear kakeya exponent. �

3. Iteration

Let’s rewrite the weak version of this multilinear decoupling inequal-
ity in Mp,q(r, σ) language, then we think about how to improve it.

Proposition 3.1 (old). MD 2n
n−1

(R) . Rε.

Proof. We can write the proposition as:

M 2n
n−1

,q(1, 1) . RεM 2n
n−1

, 2n
n−1

(R,R1/2).

We start by trivial estimate Mp,q(1, 1) . rO(1)M 2n
n−1

,2(r, 1). There is a

loss rO(1) which appears only once. The loss of rO(1) is OK since we
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choose r to be a constant of size bounded by Rδ for some small δ � ε.

Mp,q(1, 1) . rO(1)M 2n
n−1

,2(r, 1)

O . RO(δ)M 2n
n−1

,2(r, r)

MK . RO(δ)M 2n
n−1

,2(r, r)

O . · · ·
MK . RO(δ)M 2n

n−1
,2(R,R1/2)

H . RO(δ)M 2n
n−1

, 2n
n−1

(R,R1/2)

�

Let us think about what goes wrong if we try to make p larger in order
to prove the full range of decoupling theorem. One of our important
tool multilinear kakeya is not as good. When p > 2n

n−1
, we can prove

an estimate of the form

Mp,2(r, r) . rαMp,2(r2, r)

for some constant α = α(n) > 0. But losing powers of r at every stage,
we will not be able to get the desired estimate. Instead we use the
following variation of multilinear Kakeya:

Lemma 3.2. [MK2] If q = n−1
n
p ≥ 2, r ≤ R1/2, then

Mp,q(r, r) . rεMp,q(r
2, r).

In this case, we don’t lose any power of r, but we need an exponent
q ≥ 2 on the right-hand side instead of 2. Increasing this q will also
cause us an issue in our proof, but we will be able to deal with that
issue by bringing into play decoupling at smaller angular scales. The
proof of Lemma 3.2 is similar to the proof of inequality (MK) above,
but a little trickier. We’ll talk about it next class.

We set p = 2(n+1)
n−1

and try to imitate the proof of Proposition 3.1.

Mp,2(1, 1) . RO(δ)Mp,2(r, 1)

O . RO(δ)Mp,2(r, r)

H . RO(δ)M
p,

(n−1)p
n

(r, r)

MK2 . RO(δ)M
p,

(n−1)p
n

(r2, r)

H2 . RO(δ)Mp,2(r2, r)1/2Mp,p(r
2, r)1/2

To analyze the factor Mp,2(r2, r), we can repeat the procedure we just
ran. To analyze Mp,p(r

2, r) we will use induction on angular scale. By
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Hölder’s inequality,

Mp,p(r, σ) = Avg
Br⊆BR

Π
( ∑
τ :σ−1−cap

‖fj, τ‖2
Lp
avg(Br)

) 1
2
· 1
n
·p

H ≤ Π
(
Avg
Br⊆BR

(∑
τ

‖fj,τ‖2
Lp
avg(Br)

) 1
2
·p
) 1

n

Minkowski ≤ Π
(∑

τ

‖fj,τ‖2
Lp
avg(BR)

) 1
2
· 1
n

≤ Dp(τ = tθ)pMp,p(R,R
1/2) = Dp(

R

σ2
)Mp,p(R,R

1/2)

The last step matches our diagnosis: decoupling smaller caps τ into
caps θ of radius R−1/2, which involves transversality at the scale of τ .

4. summary

The key step we have made is

(4) Mp,2(r, r1/2) . rεMp,2(r2, r)1/2Dp(
R

r2
)
p
2Mp,p(R,R

1/2)1/2

for any r ≤ R1/2. We iterate 4 with r = Rδ and δ = 2−s.

Mp,2(1, 1) . RO(δ)Mp,2(r, r1/2)

. RO(δ)Dp(R
1−2δ)

1
2
·pMp,2(r2, r)1/2Mp,p(R,R

1/2)1/2

. RO(δ)Dp(R
1−2δ)

1
2
·pDp(R

1−4δ)
1
4
·pMp,2(r4, r2)

1
4Mp,p(R,R

1/2)
3
4 . · · ·

We have the following two intertwining estimates for decoupling con-
stant Dp,n(R) and multilinear decoupling constant MDp,n(R) for pa-
raboloid.
(5)

MDp,n(R) . RO(δ)Dp,n(R1−2δ)1/2Dp,n(R1−4δ)1/4 · · ·Dp,n(R1/2)2−(s−1)

(6) Dp,n(R) . KO(1)MDp,n(R) +Dp,n−1(K2)Dp,n(
R

K2
)

We plug in estimate 5 to get iterative estimate for Dp,n which we discuss
in detail next class.

Here is a warm-up excercise: if F (R) ≤ F (R1/2)3/2, how fast does F
grow in terms of R?

Hint: consider in log.
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