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1. Proof Digestion

Let P be a truncated paraboloid in Rn and Ω = N1/RP = tθ where

θ’s are R−1/2-cups. Last time we proved the following theorem.

Theorem 1.1 (Bourgain, 2011). If supp f̂ ⊂ Ω, then for 2 ≤ p ≤ 2n
n−1

,
we have

‖f‖Lp(Rn) . Rε
(∑

θ

‖fθ‖2
Lp(Rn)

) 1
2 ,

i.e., Dp,n(R) . Rε.

Proof ingredients:

1. orthogonality;
2. locally constant property;
3. induction on scales and dimension

(1) for the narrow part we used (n − 1)-dimension theory on
each B = BK2 and then used induction to analyse each
coarse cap τ ;

(2) in Multilinear Kakeya problem, we reduced from 1
100n

-close
to axis to δ-close to axis, and then used Loomis-Whitney’s
theorem at many scales, namely δ−1, then δ−2,...;

(3) In Multilinear restriction problem, we inducted on scales,
relating Multilinear restriction at scale R to Multilinear
restriction at scale R1/2 via Multilinear Kakeya.

4. multilinearity.

For 3(2), apply Loomis-Whitney’s theorem on each δ−1-cube, the esti-
mate on each such cube depends on the number of j-tubes that enter
the cube, i.e. the number of δ−1-radius tubes in direction j that cover
the cube. This is exactly the original problem with δ−1-thick tubes.
(See figure 1.)

Trying to remember all the ways that multiscale analysis is used
is one way to review and digest the proof. I think it’s striking that
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induction on scales is used in three different tricky ways during the
proof. When we do the stronger decoupling theorem of Bourgain and
Demeter, we will see a fourth tricky way to use induction on scales. I
think it would be interesting to find a more systematic way of taking
advantage of multiple scales, instead of having four (or five or six...)
separate tricks.

Proposition 1.2. Theorem 1.1 is true if we replace P by Sn−1.

Proof. The proof is exactly the same except for rescaling a cap. For a
K−1-cap τ on P , we took a linear change of variable L such that the
image L(τ) is a paraboloid. For a 1/K-cup of Sn−1, we apply L where
L stretches the tangent direction by K and the normal direction by
K2. The image L(τ) is almost a paraboloid. (See figure 2.) �

In fact, same is true for a class of surfaces.

Theorem 1.3 (Bourgain). Let S be a surface with C3-norm ≤ 1 such
that the principal curvatures of S are in [1/10, 10] (the number 10 is
nothing special). The same estimate in Theorem 1.1 holds for S.

Remark 1.4. The estimate is false for planes or S1 × [0, 1] ⊂ R3.

Question 1.5. What about surfaces having both positive and negative
principal curvatures, for example, the graph ω3 = ω2

1 − ω2
2, |ω| . 1?

2. Application of Decoupling Theorem

We study the eigenfunction of the Laplacian operator. Write Tn =
Rn/Zn. {e2πiω·x}ω∈Zn is an orthonormal basis for L2(Tn), which is also
a basis of eigenfunctions of ∆ since

∆e2πiω·x = −4π2|ω|2e2πiω·x.

If ∆f = −λ2f , then we can write

f(x) =
∑
ω∈Zn

4π2|ω|2=λ2

aωe
2πiω·x for some aω.(1)

Question 2.1. What can we say about

max{‖f‖Lp(Tn) : ∆f = −λ2f, ‖f‖L2(Tn) = 1}?

We start with p =∞ which is easier. LetN(λ) denotes the dimension
of the λ-eigenspace.

Proposition 2.2. We have

max{‖f‖L∞(Tn) : ∆f = −λ2f, ‖f‖L2(Tn) = 1} = N(λ)
1
2 .
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Proof. Take aω = N(λ)−1/2 for every ω in (1). Then ‖f‖L2(Tn) = 1 and

f(0) =
∑
ω

aω = N(λ) · 1

N(λ)
1
2

= N(λ)
1
2 .

Also note that for all g in the λ-eigenspace with ‖g‖L2(Tn) = 1, we have

|g(x)| ≤
∑
ω

|aω| · 1

≤ (
∑
ω

|aω|2)
1
2N(λ)

1
2 by Cauchy-Schwarz inequality

= ‖g‖L2(Tn)N(λ)
1
2 = N(λ)

1
2 .

Hence the maximum is attained by f and the value is N(λ)1/2. �

In general, if

f(x) =
∑

|ω|= |λ|
2π
,ω∈Zn

aωe
2πiω·x,

then

supp f̂ ⊂ Sn−1(
λ

2π
) ⊂ Bn(λ).

Moreover, |f | ≈ constant on Bn( 1
λ
) with value ≈ N(λ)1/2. Hence

‖f‖Lp(Tn) & N(λ)
1
2λ−

n
p .

We may conjecture that this is the worst case (but the following con-
jecture is not in the literature).

Conjecture 2.3 (Naive).

max{‖f‖Lp(Tn) : ∆f = −λ2f, ‖f‖L2(Tn) = 1}

≤ C(n) max{N(λ)
1
2λ−

n
p , 1}.

Perhaps we need to replace C(n) by C(n, p, ε)λε. N(λ)
1
2λ−

n
p corre-

sponds to functions very concentrated and 1 corresponds to functions
evenly spread.

Then we want to know how big N(λ) is. Observe that N(λ) is the
number of integer points on the sphere Sn−1( λ

2π
). In number theory

language, for A ∈ N, let rn(A) be the number of integer solutions to

a2
1 + · · · + a2

n = A, i.e. the number of lattice points on Sn−1(
√
A). So

N(λ) = rn( λ2

4π2 ). Recall that we sketched r2(A) . Aε using unique
factorization. We have the following few results from number theory.
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Lemma 2.4.

AverageA≤B≤2Arn(B) ∼n A
n−2
2 .

Proof.

1

A

∑
A≤B≤2A

rn(B) =
1

A
·# lattice points in Annulus(A

1
2 , (2A)

1
2 )

∼ 1

A
· A

n
2 = A

n−2
2

since the volume of Annulus(A
1
2 , (2A)

1
2 ) ∼ A

n
2 . �

Theorem 2.5 (Hardy-Littlewood). If n ≥ 5, then rn(A) ∼n A
n−2
2 for

all A ∈ N.

Corollary 2.6. If n ≥ 5, then N(λ) ∼ λn−2.

Remark 2.7. There exist exact formulas for rn(A) in terms of factors
of A when n = 2 and 4. For example, a theorem of Jacobi says that if
A is odd, then r4(A) = 8

∑
d|A d. If A is prime, then r4(A) ∼ A, but it

can be shown that r4(A) ≥ A(logA)1/2 for infinitely many A.

We may combine our naive conjecture with Corollary 2.6.

Conjecture 2.8 (Naive).

max{‖f‖Lp(Tn) : ∆f = −λ2f, ‖f‖L2(Tn) = 1}

≤ C(n) max{λ
n−2
2
−n
p , 1}.

Note that if p < 2n
n−2

, then λ
n−2
2
−n
p ≤ 1. There is indeed a similar

conjecture in the literature.

Conjecture 2.9. If 2 ≤ p < 2n
n−2

, then

max{‖f‖Lp(Tn) : ∆f = −λ2f, ‖f‖L2(Tn) = 1} ≤ C(n, p).

We have a classical result.

Theorem 2.10 (Zygmund-Cook). If n = 2, then ‖f‖Lp(Tn) ≤ C(p)‖f‖L2(Tn)

for 2 ≤ p ≤ 4.

The following result is obtained by unique factorization trick.

Theorem 2.11 (Bourgain-Rudnick-Sarnak). If n = 3, then ‖f‖Lp(Tn) .
λε‖f‖L2(Tn) for 2 ≤ p ≤ 4.

But Decoupling theorem tells us more.

Corollary 2.12 (of decoupling). For every n, ‖f‖Lp(Tn) ≤ λε‖f‖L2(Tn)

for 2 ≤ p ≤ 2n
n−1

.
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Proof. Decompose Sn−1( λ
2π

) = tθ where θ are 1-caps, i.e. 1/λ-angular
caps (see figure 3). Warning: lattice points are NOT a 1-net since
there are some gaps. Nevertheless, we can rescale Decoupling theorem
(Proposition 1.2) for Sn−1( λ

2π
), which becomes

‖g‖Lp(Rn) . λε
(∑

θ

‖gθ‖2
Lp(Rn)

) 1
2 for 2 ≤ p ≤ 2n

n− 1
.

We want to apply (2) to λ-eigenfunction

f(x) =
∑

|ω|= |λ|
2π
,ω∈Zn

aωe
2πiω·x =

∑
θ

fθ(x),

where

fθ(x) =

{
aωe

2πiω·x if ω ∈ θ
0 if no such ω ∈ θ

.

Since ‖fθ‖Lp(Rn) =∞ in the first case, we need to use a cutoff function
ηR such that supp η̂R ⊂ B1/R for some R > λ. Let g = ηRf , then

ĝ = η̂R ∗ f̂ , so gθ(x) = ηR(x)aωe
2πiωx or 0. Since f is periodic,

‖g‖Lp(Rn) ∼ R
n
p ‖f‖Lp(Tn),

‖gθ‖Lp(Rn) ∼ R
n
p |aω|

(see figure 4). Hence,

‖f‖Lp(Tn) = R−
n
p ‖g‖Lp(Rn)

. R−
n
p λε
(∑

ω

|R
n
p aω|2

)1

2
= λε‖f‖L2(Tn).

�

In general, let Ω ⊂ Zn, define

Λp(Ω) := max{
‖f‖Lp(Tn)

‖f‖L2(Tn)

: f(x) =
∑
ω∈Ω

aωe
2πiω·x}.

If we write Ωλ := {ω ∈ Zn : |ω| = |λ|
2π
}, then Corollary 2.12 says that

Λp(Ωλ) . λε for 2 ≤ p ≤ 2n
n−1

.

Question 2.13. Do there exist sets Ω ⊂ Zn such that |Ω| is arbitrarily
large and yet Λ3(Ω) is uniformly bounded?

The answer is Yes. We saw an example on the first problem set which
is close to answering this question, although it doesn’t quite work.
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Example 2.14 (from Problem Set 1). n = 1, Ω = {squares} ⊂ Z.
Write SN := {12, 22, ..., N2}. We were asked to show that Λ4(SN) .
N ε. Note that since ‖f‖Lp(Tn) is an increasing function of p, Λp(Ω) is
also an increasing function of p. Hence

Λ3(Sn) . Λ4(SN) . N ε.

The proof boiled down to checking that a number M can be written as
a sum of two squares in .M ε different ways. We can construct other
sets Ω so that a number M can be written as a sum of two elements of
Ω in . 1 different ways. For such a set Λ4(Ω) . 1. For instance, we
have the following example:

Example 2.15. Again n = 1, Ω = {2j}j∈N. Then Λ3(Ω) ≤ Λ4(Ω) . 1,
and yet Ω is infinite.

Question 2.16 (old). Can we have Λ3(Ω) . 1 but Λ4(Ω) =∞.

The answer is Yes, but the problem is actually very difficult. It was
open for many years before Bourgain resolved it in the late 1980’s using
randomly constructed Ω. As far as I know, it remains an open problem
to prove such an estimate for an explicit set Ω. Corollaries 2.6 and 2.12
give something in this spirit for the explicit sets Ωλ. For instance, we
can see from Corollary 2.6 and 2.12 that when n = 5, Λ2.5(Ωλ) . λε

and Λ4(Ωλ) ≥ λ1/4.
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