
Course Description for Math 103: Fourier Analysis

Fourier analysis is a tool that takes a complicated function f and breaks it into a
sum of simple functions. It takes a basically arbitrary function f(x) and writes it as a
linear combination of complex exponentials – functions of the form einx. Equivalently,
we can write f(x) as a linear combination of sine and cosine waves with different
frequencies, functions of the form sin(nx) or cos(nx).

This decomposition is a useful tool in a remarkable variety of problems. The
original application was partial differential equations that appear in physics, like the
heat equation and the wave equation. A century later, Fourier analysis proved useful
for studying the equations of quantum mechanics. It has applications in number
theory, combinatorics, and geometry. It’s also a fundamental tool in applied math.
For example, it is used in efficient algorithms, and it can be helpful to process the
information in medical imaging.

In this course, we will study the fundamental results of Fourier analysis. We will
study applications of Fourier analysis to several areas of pure math, and a couple of
small applications in applied math. We will also learn Lebesgue integration and use
it to study subtle questions of convergence that come up in Fourier analysis and its
applications.

This is a fairly detailed description of the course, designed to be read by a student
thinking of taking the course.

1. The fundamental theorem of Fourier analysis

A 2π-periodic function is a function f : R → C so that f(x + 2π) = f(x) for
any x. Fundamental examples of periodic functions are sines, cosines, or complex
exponetials. More precisely, for any integer n, the functions sin(nx), cos(nx), and
einx are 2π-periodic. Recall that by Euler’s formula, einx = cos(nx) + i sin(nx).

The fundamental insight of Fourier is that complex exponentials are basic building
blocks for periodic functions, and any periodic function can be written as a combi-
nation of them. We state this first as a vague theorem.

Vague Theorem 1. If f : R→ C is a “reasonable” 2π-periodic function, then there
is a sequence of numbers an ∈ C, for n ∈ Z, so that

∞∑
n=−∞

ane
inx converges in some sense to f(x).

Fourier was the first person to believe that this is true. He used this insight to
study heat flow, as we will explain below. But he was not able to prove it or even
to formulate it in a precise way. Here is one precise theorem about this question.
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Recall that a function f is Ck if it can be differentiated k times and its kth derivative
is continuous.

Theorem 1. If f : R→ C is a C2 2π-periodic function, then there is a sequence of
numbers an ∈ C so that at each point x, the infinite series

∑∞
n=−∞ ane

inx converges
to f(x).

Moreover, there is a formula for finding the coefficients an. This formula is so
fundamental that we motivate it in this course description. Suppose for a moment
that f was a finite series f(x) =

∑N
n=−N ane

inx. Suppose we knew the value of f at
each point x, and we would like to recover the coefficient an. There is a nice way to
recover the coefficients based on the following observation: if n is a non-zero integer,
then ∫ π

−π
einxdx = 0,

whereas, if n = 0, then ∫ π

−π
einxdx = 2π.

Therefore, if f(x) =
∑N

n=−N ane
inx, then∫ π

−π
f(x)e−imxdx =

∑
n

an

∫ π

−π
ei(n−m)xdx = 2πam.

Based on this example, we define the nth Fourier coefficient f̂(n) by

(1) f̂(n) := (1/2π)

∫ π

−π
f(x)e−inxdx.

We can now state a better version of Theorem 1:

Theorem 2. Suppose that f : R→ C is a C2 2π-periodic function, and let f̂(n) be

defined by Equation 1. Then at each point x, the series
∑∞

n=−∞ f̂(n)einx converges
to f(x).

This theorem tells us how an arbitrary (C2) periodic function can be written as a
combination of complex exponentials with different frequencies.

Fourier analysis uses this fundamental result to study a variety of problems. Wher-
ever a problem involves a periodic function, we can try to study the problem by
writing the function as a sum of complex exponentials. In the next sections, we will
give examples to explain how this is useful.
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So far we discussed Fourier analysis for a periodic function on R. We quickly
remark that there is also a version of the story for an arbitrary (non-periodic) function
on R, and a version for functions on higher-dimensional spaces Rd. We will cover all
these versions in the class.

2. Applications to partial differential equations

Fourier came to his idea studying heat flow. Suppose as a model problem that we
consider heat on a long thin metal rod. We idealize the problem so that the rod is
an infinitely thin line, and we let u(x, t) denote the temperature at point x in the
rod at time t. The heat equation is a partial differential equation that describes how
the temperature in the rod evolves over time:

(2)
∂u

∂t
=
∂2u

∂x2
.

In the class, we will give some motivation for this equation, but for now we focus
on how Fourier analysis helps to understand it. One problem Fourier solved was
the initial value problem: given the initial temperature distribution u(x, 0), find the
temperature at some later time u(x, t). In physical applications, the temperature
u(x, t) is of course a real number. But the equation also makes sense for complex
numbers. Moreover, if u(x, 0) = einx, the equation happens to have a simple solution:

e−n
2teinx.

If the initial data u(x, 0) happens to be 2π-periodic, then we can write it as a
series

∑∞
n=−∞ ane

inx. We know how to solve the heat equation with initial data einx.
Moreover, the sum of two solutions to the heat equation solves the heat equation.
Based on this, Fourier guessed that the solution to the initial value problem should
be

(3) u(x, t) =
∞∑

n=−∞

ane
−n2teinx.

Starting from these ideas, Fourier was able to figure out many things about heat
flow. I’m not sure if this is true, but I once heard that Fourier used this work to
calculate the ideal depth for a wine cellar - the depth at which the temperature stays
essentially constant all year long. Here is another example problem. We take a frozen
chicken which we model as a ball of radius R and leave it on the counter to thaw.
How does the time that it takes to thaw depend on the radius?

A formula like Equation 3 is interesting, but it takes substantial further work to
get from this type of formula to be able to answer questions about heat flow like the
ones in the paragraph above.



4

Fourier analysis is useful for studying many partial differential equations. In this
class, we will focus on two equations: the heat equation and the wave equation.
These two equations behave very differently from each other, but Fourier analysis
is useful for both. In each case, we begin by finding a formula for the solution as a
combination of complex exponentials. Then we will use these different formulas to
study the different behaviors of the two equations.

There are a number of subtle issues about convergence that come up when we use
Fourier analysis to study PDE. For example, from the formula for the heat equation,
Equation 2, it’s easy to check that the sum of two solutions to the heat equation is
also a solution to the heat equation. But it’s not clear whether the sum of an infinite
number of solutions to the heat equation is also a solution to the heat equation –
in particular, it’s not clear that the formula in Equation 3 is a solution to the heat
equation. We will study these issues carefully in the course.

3. Other applications

Fourier analysis has a remarkable number of applications in both pure math and
applied math. Here is a sample of other applications that we will discuss.

• Weyl’s work on equidistribution. If x is a real number, we let [x] ∈ [0, 1)
denote the fractional part of x. Take an irrational number θ, and consider the
sequence [nθ] where n = 1, 2, ... . Weyl proved that this sequence of numbers
is evenly distributed in the unit interval as n → ∞. More precisely, for any
interval I ⊂ [0, 1) of length |I|,

lim
N→∞

#{1 ≤ n ≤ N so that [nθ] ∈ I}
N

= |I|.

More remarkably, he proved that the same equidistribution holds for the much
more confusing sequence [n2θ].

• Medical imaging. Suppose that f is a continuous compactly supported
function on R3. For any line l ⊂ R3, consider the integral

∫
l
f . Suppose

that we know this integral for every line l ⊂ R3. From this information, can
we recover the function f? This type of problem can come up in medical
imaging. Suppose we inject a dye into the patient that clings to something
we would like to find, such as a tumor. We let f(x) be the density of the
dye. Then we image the patient. We shine some type of ray throught the
patient on one side and we measure the ray on the other side. By measuring
the intensity of the ray coming through the patient, we can infer how much
dye the ray passed through. In this way, we can measure

∫
l
f for some line l.

By moving around the machine, we can measure
∫
l
f for many different lines.

Based on this information, we want to reconstruct the function f , which will
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tell us where the tumor is. This is possible to do, and one method involves
Fourier analysis.

• Fast multiplication. Suppose that A and B are N -digit numbers, where
N is large. We want to compute the product A · B. The algorithm that we
learned in elementary school takes on the order of N2 operations, because
we have to multiply each digit of A by each digit of B. Remarkably, there
is a fast multiplication algorithm that requires only on the order of N logN
operations. This algorithm involves (a version of) Fourier series.

• The Heisenberg uncertainty principle. In quantum mechanics, Heisen-
berg formulated a principle saying that we cannot simultaneously know the
position and the momentum of a particle beyond a certain accuracy. One
way to look at quantum mechanics is Schrodinger’s point of view, using
wave functions and the Schrodinger equation. In this approach, a particle
in 3-dimensional space R3 is described by a complex-valued wave function
ψ : R3 → C normalized so that

∫
|ψ|2 = 1. The probability that the particle

lies in a certain region Ω ⊂ R3 is
∫

Ω
|ψ2|. The momentum of the particle is

described by the Fourier transform of ψ. Once the position and momentum of
a particle are described in terms of Fourier analysis, the uncertainty principle
can be formulated as a statement about the Fourier transform, and we will
prove it.

4. Fine points of convergence and Lebesgue theory

The story of the convergence of Fourier series has many subtleties. We stated above
that if f(x) is a C2 periodic function, then its Fourier series converges pointwise. But
if f is just a continuous periodic function, then this is not true. Let SNf denote the
partial sum of the Fourier series:

SNf(x) =
N∑

n=−N

f̂(n)einx.

If f is C2 periodic, then SNf(x)→ f(x) for each point x, but if f is only continuous,
this may not be true. We will see an example of a continuous periodic f and a point
x so that SNf(x) diverges.

Nevertheless, if f is a continuous function, the partial sums SNf do get close to f
in a different sense - a more averaged sense.

Proposition 1. If f is a 2π-periodic continuous function, then

lim
N→∞

∫ π

−π
|SNf − f |2dx = 0.



6

We say that a sequence of functions gN “converges to g in the L2 sense” if

(4) lim
N→∞

∫
|gN − g|2 = 0.

This notion of convergence comes up very naturally in Fourier analysis, and we will
study it in the class. There is a similar notion of a Cauchy sequence in the L2 sense.
We say that a sequence of functions gN is Cauchy in the L2 sense if for any ε > 0,
there is some N so that for any N1, N2 ≥ N ,∫

|gN1 − gN2|2 < ε.

If {gN} is a sequence of continuous functions that is Cauchy in the L2 sense, is there
always a limit function g? If so, how badly behaved can g be?

From the point of view of a first course in analysis, an L2-Cauchy sequence can
behave rather wildly. For instance, if gN(x) is an L2-Cauchy sequence, it may happen
that gN(x) fails to converge for every value of x. If gN(x) does converge at each point
x to a limit g(x), the limiting function g(x) may behave in a rather wild way. Even
if each function gN(x) is continuous, the limit g(x) may be discontinuous at every
point x, and it may fail to be Riemann integrable.

The theory of Lebesgue integration gives a different point of view about L2-Cauchy
sequences, and from the point of view of Lebesgue integration they behave in a much
nicer way. First of all, we will define a notion of limit using Lebesgue integration,
and in with this definition, every L2-Cauchy sequence gN has a limit g. It is still true
that the limit function g may be discontinuous at every point. However, the limit
function g is not a hopelessly complicated object, and using the Lebesgue theory of

integration we will be able to define integrals of the form
∫ b
a
g(x)dx.

The theory of Lebesgue integration also helps with other delicate issues about
infinite sums. For example, suppose that un are solutions to the heat equation and
we consider an infinite sum

∑∞
n=1 un. When is this infinite sum also a solution to

the heat equation? Using Lebesgue integration helps to prove simple criteria when
this happens.


