Geometry of manifolds, Problem Set 5

Due on Friday May 10 in class.

1. (Finishing the proof of the de Rham theorem)

Suppose that M is a closed manifold with a triangulation Tri. The triangulation leads to a cochain complex, which we write as $C_{Tri}^{j}(M,\mathbb{R})$. We will usually leave out the Tri and the \mathbb{R} and just write $C^{j}(M)$. Integration gives a map $I : \Omega^{j}(M) \to$ $C^{j}(M)$. By Stokes's theorem, this is a cochain map. In other words, if $d_{\Delta} : C^{j}(M) \to$ $C^{j+1}(M)$ is the coboundary map in the complex of simplicial cochains, then

$$I(d\beta) = d_{\Delta}(I\beta)$$

for any $\beta \in \Omega^{j}(M)$. Therefore, I induces a map $I_{*}: H^{k}_{deRham}(M) \to H^{k}_{Tri}(M)$. The de Rham theorem says that this map is an isomorphism. As a corollary, one gets a finite algorithm to compute the de Rham cohomology of any closed triangulated manifold.

We proved in class that the map I_* is injective.

Prove that I_* is surjective.

2. The geometry and topology of \mathbb{CP}^n .

a.) Covering \mathbb{CP}^n with charts. Suppose that \mathbb{CP}^n is covered with charts U_i , each diffeomorphic to a subset of \mathbb{R}^{2n} . The covering we have been using in class involves n+1 charts. We will prove that we cannot cover \mathbb{CP}^n with fewer charts.

Here is an outline. Suppose that \mathbb{CP}^n is covered with charts $U_1, ..., U_n$. Choose compact $K_j \subset U_j$ so that $\cup K_j = \mathbb{CP}^n$. Next, let ω denote the Fubini-Study form. Find 2-forms $\beta_j = \omega + d\alpha_j$ so that β_j vanishes on K_j . Conclude that $\int_{\mathbb{CP}^n} \beta_1 \wedge ... \wedge \beta_n =$ 0. But check that this integral $= \int_{\mathbb{CP}^n} \omega^n = Vol_{2n}(\mathbb{CP}^n, g_{FS}) > 0.$

b.) Suppose that $f : \mathbb{CP}^2 \to S^2$ is a smooth map. Consider the restriction of f to $\mathbb{CP}^1 \subset \mathbb{CP}^2$. Prove that this restriction has degree zero.

c.) Is there an orientation-reversing diffeomorphism of \mathbb{CP}^2 ?

3. Hopf-type invariants of maps to \mathbb{CP}^2 .

Let ω be the Fubini-Study form on \mathbb{CP}^2 renormalized so that $\int_{\mathbb{CP}^1} \omega = 1$, where $\mathbb{CP}^1 \subset \mathbb{CP}^2$ in the canonical way $([z_0, z_1] \to [z_0, z_1, z_2])$. In particular, ω is a closed form.

Let $f: S^3 \to \mathbb{CP}^2$. Since $f^*(\omega)$ is a closed 2-form on S^3 , it is equal to $d\alpha$ for some 1-form α . Let $H_1(f) := \int_{S^3} \alpha \wedge f^* \omega$. Does $H_1(f)$ depend on the choice of α ? Is it a homotopy invariant?

Let $g: S^5 \to \mathbb{CP}^2$. Since $g^*(\omega)$ is a closed 2-form on S^5 , it is equal to $d\alpha$ for some 1-form α . Let $H_2(g) := \int_{S^5} \alpha \wedge g^* \omega \wedge g^* \omega$. Does $H_2(g)$ depend on the choice of α ? Is $H_2(g)$ homotopy invariant?

Extra credit: Can you describe H_1 and/or H_2 in terms of regular values, transversality, linking...

4. As we come to the end of class, do you have any questions for me – about topics we discussed in class, or about differential geometry in general?