
Geometry of manifolds, Problem Set 3

Due on Monday, April 1 in class.

There are eight problems. Write up the answers for six of them. You should
pick what seems educational and interesting to you. You should also read all of the
problems. The last problems are longer and more open-ended, somewhere between
problems and projects. For these problems, you don’t have to give a complete solution
– you can write up the things you figured out.

Part A. Calisthenics.

1a. Suppose that Zp ⊂ Y n is a submanifold, and z ∈ Z. Prove that there is an
open set U ⊃ z in Y and a diffeomorphism φ : U → V ⊂ Rn so that φ(Z ∩U) is the
intersection of V and a p-dimensional plane.

1b. Using 1a, prove the preimage lemma for transverse maps: If f : X → Y is
transverse to Z, then f−1(Z) is a submanifold of X.

2. Defining the Hopf invariant using transversality. Recall from class the fol-
lowing theorem. Suppose that F : S2n−1 × [0, 1] → Sn, and that y, z are regular
values of F . (In other words, F is transverse to y and z.) Then the linking numbers
L(f−1

0 (y), f−1
0 (z)) and L(f−1

1 (y), f−1
1 (z)) agree. Using this theorem and the transver-

sality theorem, we will define the Hopf invariant.
Fix y, z in Sn. If f : S2n−1 → Sn is transverse to y, z, define Hopf(f) =

L(f−1(y), f−1(z)). If f is not transverse to y and z, pick a homotopic map g and
define Hopf(f) = L(g−1(y), g−1(z)).

a. Prove that Hopf(f) does not depend on the choice of g (homotopic to f).
b. Prove that if f1 is homotopic to f2, then Hopf(f1) = Hopf(f2).
c. Prove that the definition of the Hopf invariant does not depend on the choice

of points y, z ∈ Sn. In this part, you may use the following lemma (compare the
Homogeneity Lemma in Chap. 4 of Topology from the Differentiable Viewpoint):
If y1 6= z1 and y2 6= z2 are points in a connected manifold N , then there is a
diffeomorphism ψ : N → N isotopic to the identity so that ψ(y1) = y2 and ψ(z1) = z2.

Part B. On Euler numbers

3. Compute the Euler number of TSn. To do this, find a smooth vector field
v : Sn → TSn which is transverse to the zero section, and add up the signs of the
intersection points. (We sketched one such vector field v in class.)
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Minor point: we need an orientation for TSn. Suppose that x ∈ Sn and v ∈ TxS
n,

so that (x, v) ∈ TSn. The tangent bundle of TSn at the point (x, v) is TxS
n×TxS

n. If
e1...en is a positive basis of TxS

n, then (e1, 0), ..., (en, 0), (0, e1), ..., (0, en) is a positive
basis of T(x,v)TS

n.

4. Prove that TS2 × R is diffeomorphic to S2 × R3. (In fact, each of these are
3-dimensional vector bundles over S2, and they are isomorphic as vector bundles.)
The key point is that the normal bundle of S2 ⊂ R

3 is trivial.

5. Prove that TS2 is not diffeomorphic to S2 × R2. Here is a sketch.
a. Prove that S2 × R2 embeds into R4.
b. Using a., prove that if X, Y ⊂ S2×R2 are compact 2-dimensional submanifolds

(without boundary), then I(X, Y ) = 0. (If X and Y are transverse, then I(X, Y )
is the sum of the intersection points of X and Y with signs. In general, if i : X →
S2 × R2 is the inclusion map, then I(X, Y ) means I(i, Y ).)

c. Using Problem 3 and part b., prove that TS2 is not diffeomorphic to S2 × R2.

6. For each D ∈ Z, we will define a 2-dimensional oriented vector bundle VD

over S2. Write S2 as two open sets U1 ∪ U2, where U1 is a neighborhood of the
Northern hemisphere and U2 is a neighborhood of the Southern hemisphere. Note
that U1 ∩ U2 is a neighborhood of the equator. On U1 ∩ U2, we use (oriented)
coordinates (θ, l) ∈ S1 × (−1, 1), where θ is the “longitude” and l is the latitude.
The equator is given by l = 0, and the Southern hemisphere is given by l ≤ 0. Let
R(φ) ∈ GL2(R) denote the rotation in the positive direction by angle φ. Now we
glue U1 × R2 with U2 × R2 by the change-of-charts map

g12(θ, l) = R(Dθ).

This gluing of charts defines VD. In other words, if x = (θ, l) ∈ U1 ∩ U2, and if
(x, v) is in U1 × R2, and if we look at the corresponding point of VD in the chart
U2 × R2, we get the point (x,R(Dθ)v) ∈ U2 × R2.

Compute the Euler number of VD.

Part C. More open-ended problems. These problems are not just applications of
what we studied in class, but the things we learned in class are relevant.

7. Topology of complex algebraic curves. One of my goals during the course is
to study the geometry and topology of complex algebraic varieties. This was a big
topic in the development of differential geometry and topology, including Riemann’s
work in the 1850’s and 60’s and Lefshetz’s work in the 1920’s and 30’s.

Let Z ⊂ C2 be the set {(z1, z2) such that z4
1 + z4

2 = 1}.
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Let Σ ⊂ Z be the intersection of Z with a closed ball of radius 1000: Σ = {(z1, z2) ∈
Z such that |z1|

2 + |z2|
2 ≤ 10002}.

Both Z and Σ are two-dimensional surfaces in C2, which we identify with R4. More
precisely, Z is a two-dimensional manifold and Σ is a two-dimensonal manifold with
boundary. What can you figure out about the topology of Σ? Since Σ lies in R4,
this task will require grappling with geometric thinking in four dimensions, where
visualization is challenging.

Here are some particular questions you may look into.
Can you prove that Σ is a manifold with boundary and ∂Σ is Σ ∩ S3(1000)? Can

you prove that Σ is orientable? Can you prove that Σ is connected? Can you find
the genus of Σ?

How many components does ∂Σ have? Each component of ∂Σ is a circle in the
three-sphere S3(1000). How are the circles arranged? Are any two of them linked?

8. Challenge problem. Recall that a map between metric spaces has Lipschitz
constant ≤ L if dist(f(x), f(y)) ≤ Ldist(x, y). Suppose that f is a smooth map
from S3 to S2 with Lipschitz constant L. How big can the Hopf invariant of f be?

(Here are a few ways of thinking about the Lipschitz constant. We use the unit
sphere metrics on S3 and S2. That means that the distance between two points
x, y ∈ S3 is the length of the shortest path between them in S3. A second way to
think of the Lipschitz constant is that a smooth map f : S3 → S2 has Lipschitz
constant ≤ L if and only if |dfx(v)| ≤ L|v| for any v ∈ TxS

3. A third point of view is
that f has Lipschitz constant ≤ L if and only if, for every path γ in the domain, the
length of f(γ) is ≤ Llength(γ). For any smooth map between Riemannian manifolds,
the Lipschitz constant has these three interpretations, connecting to distances, the
size of the derivative, and the lengths of paths.)

You can look for examples with large Hopf invariant. You can prove upper bounds
for the Hopf invariant. And you can also look for simpler problems that seem re-
lated...


