
METAPHORS IN SYSTOLIC GEOMETRY

LARRY GUTH

This essay is about Gromov’s systolic inequality. We will discuss why the inequality
is difficult, and we will discuss several approaches to proving the inequality based
on analogies with other parts of geometry. The essay does not contain proofs. It is
supposed to be accessible to a broad audience.

The story of the systolic inequality begins in the 1940’s with Loewner’s theorem.

Loewner’s systolic inequality. (1949) If (T 2, g) is a 2-dimensional torus with a
Riemannian metric, then there is a non-contractible curve γ ⊂ (T 2, g) whose length
obeys the inequality

length(γ) ≤ CArea(T 2, g)1/2,

where C = 21/23−1/4.

To get a sense of Loewner’s theorem, let’s look at some pictures of 2-dimensional
tori in R3.

Figure 1. Pictures of tori
1



2 LARRY GUTH

The curves shown in the pictures above are all non-contractible. The length of the
shortest non-contractible curve on a Riemannian manifold is called its systole.

The first picture is supposed to show a torus of revolution, where we take the
circle of radius 1 around the point (2, 0) is the x-z plane and revolve it around the
z-axis. It has systole 2π and area around 60, and so it obeys the systolic inequality.
According to Loewner’s theorem, there is nothing we can do to dramatically increase
the systole while keeping the area the same. The second picture shows a long skinny
torus. When we make the torus skinnier and longer, the systole goes down and the
area stays about the same. The third picture shows a torus with a long thin spike
coming out of it. When we add a long thin spike to the torus, the systole doesn’t
change and the spike adds to the area. The fourth picture shows a ridged torus with
some thick parts and some thin parts. When we put ridges in the surface of the
torus, the systole only depends on the thinnest part and the thick parts contribute
heavily to the area. These pictures are not a proof, but I think they make Loewner’s
inequality sound plausible.

(Friendly challenge to the reader: can you think of a torus with geometry radically
different from the pictures above?)

Thirty years later, Gromov generalized Loewner’s theorem to higher dimensions.

Gromov’s systolic inequality for tori. (1983 [9]) If (T n, g) is an n-dimensional
torus with a Riemannian metric, then the systole of (T n, g) is bounded in terms of
its volume as follows.

Sys(T n, g) ≤ CnV ol(T
n, g)1/n.

In his book Metric Structures [10], Gromov reminisces about his work on the
systolic inequality: “Since the setting was so plain and transparent, I expected rather
straightforward proofs ... Having failed to find such a proof, I was inclined to look
for counterexamples, but...” The statement of the theorem is extremely elementary
compared to other theorems in Riemannian geometry. In spite of the plain and direct
statement, the theorem is difficult. In particular, it’s difficult to see how to approach
the problem - how to get started.

The systolic inequality for the 2-dimensional torus was formulated and proven by
Loewner, and a little later Besicovitch gave a more elementary proof with a worse
constant. The two-dimensional proofs of Loewner and Besicovitch do not generalize
to three dimensions. Gromov learned about the problem in the late 60’s from Burago,
and it was popularized in the West by Berger. Gromov thought about it off and on
during the 1970’s and he devoted a chapter to it in the first edition of [10], published
at the end of the 1970’s. At this point in time there was still no good way to approach
the systolic problem for the 3-dimensional torus.
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In the early 80’s, Gromov formulated several remarkable metaphors connecting the
systolic inequality to important ideas in other areas of geometry. With the help of
these metaphors, he proved the systolic inequality. We now have three independent
proofs of the systolic inequality for the n-dimensional torus, each based on a different
metaphor. Each metaphor gives an approach to proving the systolic inequality - a
way to get started.

The goal of this essay is to explain Gromov’s metaphors. In doing that, I hope
to describe the flavor of this branch of geometry and put it into a broad context.
Gromov’s metaphors connect the systolic problem to the following areas:

1. General isoperimetric inequalities from geometric measure theory. (Work of
Federer-Fleming, Michael-Simon, Almgren. Late 50’s to mid 80’s.)

2. Topological dimension theory. (Work of Brouwer, Lebesgue, Szpilrajn. 1900-
1940.)

3. Scalar curvature. (Work of Schoen-Yau. Late 70’s.)
4. Hyperbolic geometry and topological complexity. (Work of Thurston-Milnor.

Late 70’s.)
Before turning to the metaphors, I want to discuss why the systolic inequality is

difficult to prove.
The systolic inequality is reminiscent of the isoperimetric inequality. Let’s recall

the isoperimetric inequality and then compare them.

Isoperimetric inequality. Suppose that U ⊂ Rn is a bounded open set. Then the
volume of the boundary ∂U and the volume of U are related by the formula

V oln(U) ≤ CnV oln−1(∂U)
n−1

n .

The isoperimetric inequality is a theorem about all domains U ⊂ Rn, and the
systolic inequality for the n-torus is a theorem about all the metrics g on T n. The
set of domains and the set of metrics are of course both infinite. But in some practical
sense, the set of metrics is larger or at least more confusing. In my experience, if I
make a naive conjecture about all domains U ⊂ Rn, with a non-sharp constant Cn,
the naive conjecture is often right. If I make a naive conjecture about all metrics on
T 2, it is right nearly half the time. If I make a naive conjecture about all metrics on
T 3, it is wrong. Here’s an example.

Naive conjecture 1. If U ⊂ Rn is a bounded open set, then there is a function
f : U → R so that for every y ∈ R, the area of the level set f−1(y) is controlled by
the volume of U

V oln−1[f
−1(y)] ≤ CnV oln(U)

n−1
n .

I proved naive conjecture 1 in [13].
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Naive conjecture 2. If g is a metric on T 2, then there is a function f : T 2 → R so
that for every y ∈ R, the length of the level set f−1(y) is controlled by the area of g

Length[f−1(y)] ≤ CArea(T 2, g)1/2.

Naive conjecture 2 is also true. This result is more surprising than the first one.
The problem was open for a long time. It was proven by Balacheff and Sabourau in
[3].

Naive conjecture 3. If g is a metric on T 3, then there is a function f : T 3 → R so
that for every y ∈ R, the area of the level set f−1(y) is controlled by the volume of g

Area[f−1(y)] ≤ CV ol(T 3, g)2/3.

Naive conjecture 3 is wrong. (The counterexamples are based on work of Brooks.
We will discuss them more in Section 4.)

This anecdote suggests why the systolic inequality is much harder to prove in
dimension n ≥ 3. The basic issue is that the set of metrics on T 3 is qualitatively
larger and stranger than the set of metrics on T 2. In my experience, the four simple
and naive pictures at the beginning of this essay give a fairly decent sample of the
possible metrics on T 2. Let us imagine trying to make a similar sample of metrics on
T 3. First of all, curved three-dimensional surfaces are much harder to picture than
curved two-dimensional surfaces - I don’t know how to draw meaningful pictures.
There are metrics on T 3 which are “analogous” to the two-dimensional pictures
above. But there are also new phenomena like Brooks’s metrics. These metrics are
quite different from any metric on T 2, making them particularly hard to visualize.

Here is another example of a strange high-dimensional metric.

Gromov-Katz examples. ([19]) For each n ≥ 2, and every number B, there is a
metric on Sn × Sn with (2n-dimensional) volume 1, so that every non-contractible
n-sphere in Sn × Sn has (n-dimensional) volume at least B.

The Gromov-Katz examples are important in our story, because they show that
there is no version of the systolic inequality with n-dimensional spheres in place of
curves. The first Gromov-Katz examples appear in dimension 4, when n = 2, but
Gromov and Katz found similar phenomena in dimension 3.

When n ≥ 3, the zoo of metrics on T n contains many wild examples like these.
Because the set of metrics on T 3 is so “big”, universal statements about all the
metrics on T 3 are rare and significant.

In this essay, I will try to state theorems in the most elementary way that gets
across the main idea. Therefore, I often don’t state the most general version of
a theorem. For example, Gromov’s systolic inequality applies to many manifolds
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besides tori. Gromov proved a systolic inequality for any closed manifold M with
πi(M) = 0 for i ≥ 2, for real projective spaces, and for other manifolds.

The four main sections of the paper describe Gromov’s four metaphors. Afterwards
there are two appendices giving other perspectives on the difficulty of the systolic
problem: the lack of good symmetries and the work of Nabutovsky-Weinberger on
the complexity of the space of metrics.

This essay does not contain an actual proof of the systolic inequality. For the
reader who would like to learn more, here are some resources.

Gromov’s writing on systoles: The central paper “Filling Riemannian manifolds”
[9], Chapter 4 of Metric Structures [10], and the expository essay “Systoles and
isosystolic inqualities” [12].

Katz’s book Systolic Geometry and Topology [20], and his website on systoles [21].
My ‘Notes on Gromov’s systolic inequality’ gives in detail Gromov’s original proof

(14 pages) [16].

Acknowledgements. I would like to thank Hugo Parlier for the figure on the
first page and Alex Nabutovsky for helpful comments on a draft of this essay.

1. The general isoperimetric inequality

In the late 1950’s, Federer and Fleming discovered a version of the isoperimetric
inequality for n-dimensional surfaces in RN for any n < N . This result greatly
generalizes the standard isoperimetric inequality. Their original result was improved
and refined over 25 years until Almgren proved the optimal version in 1986.

Let us write Sn
R to denote a round n-sphere of radius R, and Bn

R to denote the
Euclidean n-ball of radius R.

General isoperimetric inequality. (Almgren, building on work of Federer-Fleming
and Michael-Simon) Let Mn ⊂ RN be a closed surface with

V ol(M) = V ol(Sn
R).

Then there is a surface Y n+1 ⊂ RN with ∂Y = M and with

V ol(Y ) ≤ V ol(Bn+1
R ).

Comments. The closed surface Y may not be a manifold. It will be a manifold with
minor singularities. The surface Y will always be a chain in the sense of algebraic
topology. If M is orientable it will be a chain with integer coefficients, and if M is
non-orientable, it will be a chain with mod 2 coefficients.

History. Federer and Fleming were the first to formulate this inequality [7]. In
my opinion, just formulating the question was a great contribution to geometry.
The isoperimetric inequality is the most fundamental and important inequality in
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geometry. It’s not obvious how to formulate a version of the isoperimetric inequality
for a surface of codimension≥ 2. Such a surface does not have a well-defined “inside”.
Instead, Federer and Fleming observed that a surface Mn of high codimension is the
boundary of many surfaces Y n+1. The right analogue of the isoperimetric inequality
is to claim that one of these many surfaces has controlled volume. Federer and
Fleming proved the isoperimetric inequality with a non-sharp constant: V ol(Y ) ≤
C(n,N)V ol(M)

n+1
n .

In the early 1970’s, Michael and Simon improved the constant in this inequality
[22]. They applied important ideas from minimal surface theory to the problem,

and they were able to prove that V ol(Y ) ≤ C(n)V ol(M)
n+1

n . In other words, their
constant C(n) does not depend on the ambient dimension, and one gets a meaningful
inequality for a three manifold M embedded in some space RN of huge or unknown
dimension. In the mid 80’s, Almgren proved the sharp constant with a long and
difficult proof using geometric measure theory [1] .

If M has small volume, then it admits a “filling” Y whose volume is also small. The
filling Y is small in other ways too. For example, it does not stick out too far away
from M . We say this precisely as follows: we let NR(M) denote the R-neighborhood
of M . (In other words, x ∈ NR(M) if dist(x,M) < R.)

Euclidean filling radius inequality. (Bombieri-Simon, building on work of Gehring,
Federer-Fleming) Let Mn ⊂ RN be a closed surface with

V ol(M) = V ol(Sn
R).

Then there is a surface Y n+1 with ∂Y = M and with

Y ⊂ NR(M).

Comments. Gromov defined the filling radius of M ⊂ RN as the smallest radius
r so that M bounds some surface Y ⊂ Nr(M). According to the filling radius
inequality FillRad(Mn) ≤ CnV ol(M)1/n, with sharp constant Cn coming from the
case of a round sphere. The filling radius inequality was implicitly proven by Federer
and Fleming with a non-sharp constant. But Federer and Fleming did not state the
inequality. Gehring formulated his “link problem” in the 60’s - the link problem is a
close cousin of the inequality above. Gehring proved the inequality with a non-sharp
constant following the method of Federer and Fleming. Bombieri and Simon proved
the sharp inequality in the early 70’s using minimal surface theory [5]

Gromov used the Bombieri-Simon inequality to attack the systolic problem for
manifolds that embed nicely into Euclidean space. If Ψ : (Mn, g) → RN is a con-
tinuous map, we say that Ψ is an L-bilipschitz embedding if, for any two points
p, q ∈M ,
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1

L
|Ψ(p)−Ψ(q)| ≤ dist(M,g)(p, q) ≤ L|Ψ(p)−Ψ(q)|.

If (M, g) admits an L-bilipschitz embedding into Euclidean space, for a reasonably
small L, then we can use Euclidean geometry to understand the geometry of (M, g).
In particular, applying the Bombieri-Simon filling radius estimate, Gromov proved
the following inequality:

Systolic inequality for (T n, g) nicely embedded in RN . If (T n, g) is a Rie-
mannian n-torus, and there is an L-bilipschitz embedding from (T n, g) into RN , then
(T n, g) contains a non-contractible curve γ with

length(γ) ≤ 6L2V ol(T n, g)1/n.

Given the Euclidean filling radius inequality, Gromov’s proof is about one page
long.

At this point, it makes sense to ask whether every (T 3, g) admits an embedding into
some RN with bilipschitz constant at most 1000. If we had such embeddings, then we
would get the systolic inequality on the 3-torus, and we could try harder dimensions.
Gromov found that strange metrics (T 3, g) which cannot be nicely embedded into
RN no matter how large N is.

Non-embeddable examples. (Gromov, 1983) For every number L, there is a met-
ric g on T 3 so that (T 3, g) does not admit an L-bilipschitz embedding into RN for
any N .

These examples of Gromov are cousins of the strange examples of Brooks that we
mentioned in the introduction. In Section 4, we will say a little more about where
these examples come from.

Riemannian manifolds do not admit nice bilipschitz embeddings into Euclidean
space. But every compact Riemannian manifold (Mn, g) does admit a 1-bilipschitz
embedding into L∞. In fact, every compact metric space embeds isometrically into
L∞ as discovered by Kuratowski at the turn of the century.

Kuratowski embedding theorem. If X is any compact metric space with distance
function d, then there is a map I from X to the Banach space L∞(X) so that d(x, y) =
‖I(x)− I(y)‖L∞ .

To prove the systolic inequality, Gromov extended all the geometric measure theory
described above to the Banach space L∞.

Metaphor 1. The systolic inequality is like the general isoperimetric inequality in
a Banach space.
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This metaphor gives us an approach to the systolic problem. It doesn’t immedi-
ately give us the solution, but it gives an outline of how we may proceed. We can
take each theorem above and try to adapt it to the Banach space L∞. In this way,
we find a lot of little problems, all related to the systolic inequality, and some of
them easier to approach.

Having said that, the proofs of the general isoperimetric inequality do not adapt
well to the Banach space L∞. The Federer-Fleming proof applies in finite-dimensional
Banach spaces, but the constant in their inequality depends on the ambient dimen-
sion, so it doesn’t give anything in an infinite-dimensional space like L∞. The proofs
of Michael-Simon and Almgren depend heavily on the Euclidean structure, and they
do not adapt to Banach spaces. The underlying issue seems to be that these proofs
exploit the large symmetry group of Euclidean space. There are more comments on
this issue in Section 5. Gromov had to rethink the proof of the general isoperimet-
ric inequality - he found a more robust proof that continues to function in Banach
spaces.

The general isoperimetric inequality is a wonderful inequality, and I want to really
encourage people to read about it. From one point of view, the best proof is Alm-
gren’s proof, because he proves the sharp constant. But Almgren’s proof is difficult,
and it doesn’t apply in Banach spaces. From another point of view, the best proof
is due to Wenger in 2004. Wenger’s proof is only two pages long. It’s very clear,
and it needs very few prerequisites. The proof is as simple and constructive as the
Federer-Fleming argument, the quality of the estimate is as good as the Michael-
Simon argument, and it is even more robust than Gromov’s proof from 1983. I think
anyone working in geometry, analysis, or topology should find it accessible, and at
the same time, it contains a kernel of wisdom about surface areas which took many
years to develop.

2. Topological Dimension Theory

In the 1870’s, Cantor discovered that Rq and Rn have the same cardinality even
if q < n. This discovery surprised and disturbed him. He and Dedekind formulated
the question whether Rq and Rn are homeomorphic for q < n. This question turned
out to be quite difficult. It was settled by Brouwer in 1909. Brouwer’s theorem is
a major achievement of topology. I’m going to describe some of the history of this
result following the essay “Emergence of dimension theory” [18].

Topological Invariance of Dimension. (Brouwer 1909) If q < n, then there is
no homeomorphism from Rn to Rq.

Cantor and Dedekind certainly knew that Rq and Rn were not linearly isomorphic.
Linear algebra gives us two stronger statements:
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Linear algebra lemma 1. If q < n, then there is no surjective linear map from Rq

to Rn.

Linear algebra lemma 2. If q < n, then there is no injective linear map from Rn

to Rq.

It seems reasonable to try to prove topological invariance of dimension by general-
izing these lemmas. A priori, it’s not clear which lemma is more promising. Cantor
spent a long time trying to generalize Lemma 1 to continuous maps. (At one point,
Cantor even believed he had succeeded.) In fact, Lemma 1 does not generalize to
continuous maps.

Space-filling curve. (Peano, 1890) For any q < n, there is a surjective continuous
map from Rq to Rn.

In his important paper on topological invariance of dimension, Brouwer proved
that Lemma 2 does generalize to continuous maps.

Brouwer non-embedding theorem. If n > q, then there is no injective continuous
map from Rn to Rq.

So it turns out that Lemma 2 is more robust than Lemma 1. A smaller-dimensional
space may be stretched to cover a higher-dimensional space. But a higher-dimensional
space may not be squeezed to fit into a lower-dimensional space. This fact is not obvi-
ous a priori - it is an important piece of acquired wisdom in topology. In this section,
we’re going to talk about the geometric consequences/cousins of this fundamental
discovery of topology.

Shortly after Brouwer, Lebesgue introduced a nice approach to Brouwer’s non-
embedding theorem in terms of coverings. If Ui is an open cover of some set X, we
say that the multiplicity of the cover is at most M if each point x ∈ X is contained
in at most M open sets Ui. We say the diameter of a cover is at most ε if each open
set Ui has diameter at most ε. For any ε > 0, Lebesgue constructed an open cover of
Rn with multiplicity ≤ n+1 and diameter at most ε. He then proposed the following
lemma.

Lebesgue covering lemma. If Ui are open sets that cover the unit n-cube, and
each Ui has diameter less than 1, then some point of the n-cube lies in at least n+ 1
different Ui.

(Lebesgue proposed his covering lemma in 1909 to give an alternate approach to
the topological invariance of dimension. In his first paper, he didn’t give any proof of
the lemma - perhaps he regarded it as obvious. Brouwer challenged him to provide
a proof, and a bitter dispute began between the two mathematicians. Brouwer gave
the first proof of the Lebesgue covering lemma in 1913.)
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To see how the Lebesgue covering lemma relates to the non-embedding theorem,
suppose that we have a continuous map f from the unit n-cube to Rq for some q < n.
Lebesgue constructed open covers of Rq with multiplicity q+ 1 and arbitrarily small
diameters. If Ui cover Rq, then f−1(Ui) are an open cover of the unit n-cube. Since
q + 1 < n + 1, we see that some set f−1(Ui) must have diameter at least 1. On the
other hand, the diameters of the sets Ui are as small as we like. By taking a limit,
we can find a point y ∈ Rq such that the fiber F−1(y) has diameter at least 1. So
the Lebesgue covering lemma implies the following large fiber lemma:

Large fiber lemma. Suppose q < n. If f is a continuous map from the unit n-cube
to Rq, then one of the fibers of f has diameter at least 1. In other words, there exist
points p, q in the unit n-cube with |p− q| ≥ 1 and f(p) = f(q).

The large fiber lemma is a precise quantitative theorem saying that an n-dimensional
cube cannot be squeezed into a lower-dimensional space. In particular, the large fiber
lemma immediately implies that there is no injective continuous map from Rn to Rq.

Gromov thought carefully about the circle of proofs described above, especially the
hypotheses in the Lebesgue covering lemma. What is it about the unit n-cube which
makes it hard to cover with multiplicity n. Roughly speaking, the key point is that
the unit n-cube is “fairly big in all n directions”, which prevents it from looking like
something lower-dimensional. Gromov was able to generalize the covering lemma to
spaces that are big in other ways, including spaces with large systole.

Gromov/Lebesgue covering lemma. (1983) Suppose that g is a Riemannian
metric on the n-dimensional torus T n with systole at least 10. In other words, every
non-contractible loop in (Mn, g) has length at least 10.

If Ui is an open cover of (Mn, g) with diameter at most 1, then some point of M
lies in at least n+1 different sets Ui.

I haven’t looked back at the original papers, but I think that Gromov’s proof of
the covering lemma above extends ideas that originate in Brouwer’s original proof of
the covering lemma from 1913.

Topologists following Lebesgue (Menger, Hurewicz...) used the covering lemma as
a basis for defining the dimension of metric spaces. They said that the Lebesgue
covering dimension of a metric space X is at most n if X admits open covers with
multiplicity at most n + 1 and arbitrarily small diameters. They proved that the
Lebesgue covering dimension is a topological invariant of compact metric spaces.

Different notions of dimension were intensively studied in the first half of the twen-
tieth century. The most well-known is the Hausdorff dimension of a metric space.
The Hausdorff dimension and the Lebesgue covering dimension may be different.
For example, the Cantor set has Lebesgue dimension zero and Hausdorff dimen-
sion strictly greater than zero. (The Hausdorff dimension may be any real number,
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whereas Lebesgue dimension is always an integer.) In 1937, Szpilrajn proved that
LebDim(X) ≤ HausDim(X) for any compact metric space X. To do so, he con-
structed coverings of metric spaces with small diameters and bounded multiplicities.

Szpilrajn covering construction. (1937) If X is a (compact) metric space with n-
dimensional Hausdorff measure 0, and ε > 0 is any number, then there is a covering
of X with multiplicity at most n and diameter at most ε. Hence X has Lebesgue
dimension ≤ n− 1.

Gromov asked whether Szpilrajn’s theorem is stable in the following sense: If
X has very small n-dimensional Hausdorff measure, is there a covering of X with
multiplicity at most n and small diameter?

Metaphor 2. The systolic inequality is like a more quantitative version of topological
dimension theory - especially Szpilrajn’s theorem.

This metaphor gives a second approach to the systolic inequality. The first half
of the approach is Gromov’s systolic version of the Lebesgue covering lemma. The
second half of the approach is a systolic version of the Szpilrajn theorem which I
proved in [14].

Covering construction for Riemannian manifolds of small volume. (Guth
2008) If (Mn, g) is an n-dimensional Riemannian manifold with volume V , then
there is an open cover of (Mn, g) with multiplicity n and diameter at most CnV

1/n.

To end this section, we will describe why this covering result is harder than Szpil-
rajn’s, and what kind of new techniques are needed to prove it. The key issue is that
we need more quantitative estimates. The first step in Szpilrajn’s proof is to cover
our space X with open sets of diameter at most ε and map X to the nerve of the
covering. In Szpilrajn’s proof, we know that the n-dimensional Hausdorff measure of
X is zero, and the Hausdorff measure of the image of X is automatically zero as well.
But in my proof, we know that the n-dimensional volume of (M, g) is some small
number V . It does not automatically follow that the volume of the image of (M, g)
is small. If we choose our cover arbitrarily, then the map to the nerve may stretch
the volume of (M, g) by an uncontrolled factor. We need to choose an intelligent
cover with good estimates on the multiplicity of the cover, the volumes of the open
sets in the cover, the size of the overlaps between neighboring open sets, etc.

Gromov began the job of proving quantitative theorems about open covers in [11]
and [9], and my proof builds on his ideas. The main tool is the Vitali covering
lemma and variations on it, which give estimates about how balls can overlap each
other. The Vitali covering lemma first appeared at the beginning of the twentieth
century, and it was used to attack questions in measure theory such as the Lebesgue
differentiation theorem. In the 30’s - 50’s, it became an important tool in harmonic
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analysis, playing a role in the study of the Hardy-Littlewood maximal function,
convolution inequalities, and the Calderon-Zygmund inequalities. Meanwhile, the
covering lemma became an important tool in geometric measure theory, where it
was used to estimate the geometry of surfaces in Euclidean space. For example,
it appears in the Michael-Simon proof of the general isoperimetric inequality, and
also more recently in Wenger’s proof of the general isoperimetric inequality. Gromov
began to use the covering lemma to estimate the geometry of balls in Riemannian
manifolds and other metric spaces.

3. Scalar Curvature

The scalar curvature is a subtle and important invariant of a Riemannian metric.
It plays an important role in general relativity and also in pure geometry.

The most down-to-earth description of scalar curvature involves volumes of small
balls.

Scalar curvature and volumes of balls. If (Mn, g) is a Riemannian manifold
and p is a point in M , then the volumes of small balls in M obey the following
asymptotic:

V olB(p, r) = ωnr
n − cnSc(p)rn+2 +O(rn+3). (∗)

In this equation, ωn is the volume of the unit n-ball in Euclidean space, and cn > 0
is a dimensional constant. So we see that if Sc(p) > 0, then the volumes of tiny balls
B(p, r) are a bit less than Euclidean, and if Sc(p) < 0 then the volumes of tiny balls
are a bit more than Euclidean.

Understanding the relationship between scalar curvature and the topology of M is
a major problem in differential geometry. Which closed manifolds M admit metrics
with positive scalar curvature? A guiding problem in the area is the Geroch conjec-
ture (sadly I am unable to locate the history of this conjecture. Possibly I should
have attributed it to Kazdan-Warner or to someone else.)

Geroch conjecture. The n-torus does not admit a metric of positive scalar curva-
ture.

The Geroch conjecture was proven by Schoen and Yau in the late 1970’s (for
n ≤ 7). Their proof is one of the main breakthroughs in the study of scalar curvature.

To get a first sense of the Geroch conjecture, consider the case n = 2. In this case,
the scalar curvature is equal to twice the Gauss curvature. By the Gauss-Bonnet
formula,

∫
T 2 Gdarea = 0. (Here G denotes the Gauss curvature of a metric g on T 2,

and darea denotes the area form of g.) From this formula, we see that the Geroch
conjecture holds for n = 2.
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The Geroch conjecture is much harder for n ≥ 3. I would like to try to explain
why. First of all, the proof we gave for the Geroch conjecture when n = 2 does not
generalize to higher dimensions. The Gauss-Bonnet formula does generalize, but the
higher-dimensional version does not involve scalar curvature.

How can we use positive scalar curvature? Condition (∗) about volumes of small
balls sounds comprehensible, but it is quite difficult to apply it. I guess the key
difficulty is that (∗) only applies to the limiting behavior of tiny balls, and it doesn’t
tell us anything about balls for any particular radius r > 0. To get a perspective,
let’s compare (∗) with the Bishop-Gromov inequality for Ricci curvature.

Bishop-Gromov inequality. If (Mn, g) is a Riemannian manifold with Ricci cur-
vature at least 0, then for any p ∈M and any radius r,

V olB(p, r) ≤ ωnr
n. (∗∗)

The condition Ric ≥ 0 is much stronger than the condition Scal ≥ 0, and the
inequality (∗∗) is much stronger than (∗). Inequality (∗) is just a local inequality
describing the geometry of infinitesimal or tiny balls, whereas inequality (∗∗) is a
global inequality, describing the geometry of balls at every scale. The topology of
a manifold is a global invariant. It’s not so hard to get from a global geometric
estimate like (∗∗) to a theorem about the topology of a manifold, but there’s no
way to go immediately from a local estimate like (∗) to any information about the
topology or large-scale structure of a manifold.

When n = 2, the scalar curvature, Ricci curvature, and Gauss curvature are all
equivalent. In this case, the condition Scal ≥ 0 implies (∗∗), and there are plenty
of other global geometric estimates that it implies as well. But when n ≥ 3, the
condition Scal > 0 definitely does not imply (∗∗). In fact, it doesn’t lead to any
estimate at all for the volumes of balls of a particular radius, say r = 1.

Bishop, Rauch, Myers, and other geometers proved global geometric inequalities
for manifolds with Ric ≥ 0 or with Sec ≥ 0 in the 30’s, 40’s, 50’s. These inequalities
appeared almost as soon as mathematicians began to look for them. But a global
geometric inequality for metrics with Scal ≥ 0 was not proven until the late 1970’s,
many years after geometers began to look for such an inequality. It was hard to find
partly because you cannot write such an inequality just using standard geometric
quantities like volume, diameter, etc., which appear in the inequalities of Bishop and
Myers. Instead one has to find new geometric invariants well suited to the problem
at hand. The first example was the positive mass conjecture. It required a lot of
wisdom from physics to even formulate the positive mass conjecture.

In the late 70’s, Schoen and Yau proved the Geroch conjecture (for dimension
n ≤ 7) as well as the positive mass conjecture. (See [27] and [28].) The key estimate
in their proof is the following observation.
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Schoen-Yau observation. If (Mn, g) is a Riemannian manifold with Scal > 0,
and Σn−1 ⊂ M is a stable minimal hypersurface, then Σ has - on average - positive
scalar curvature also.

To see how to apply this observation, suppose that (T 3, g) has positive scalar
curvature. Then a stable minimal hypersurface Σ ⊂ T 3 is 2-dimensional, and it
has (on average) positive scalar curvature. In two dimensions, the scalar curvature
is much better understood, and it’s not so hard to get topological and geometric
information about Σ. Now we know topological and geometric information about
every minimal surface Σ in M , and we can use this to learn topological and geometric
information about M itself. With this tool, Schoen and Yau proved the Geroch
conjecture.

Now we can describe Gromov’s third metaphor. As we saw above, the scalar
curvature measures the volumes of tiny (or infinitesimal) balls. Gromov wondered if
there are similar estimates for the volumes of balls with finite radii. To make this
metaphor precise, let us define the “macroscopic scalar curvature” of (Mn, g) at scale
r in terms of the volumes of balls with radius r.

Let p be a point in (Mn, g). We let V (p, r) be the volume of the ball of radius r
around p. Then we let Ṽ (p, r) be the volume of the ball of radius r around p in the
universal cover of M . (We’ll come back in a minute to discuss why it makes sense to
use the universal cover here.)

Now we compare the volumes Ṽ (p, r) with the volumes of balls of radius r in a
constant curvature space. We let ṼS(r) denote the volume of the ball of radius r
in a simply connected space with constant curvature and scalar curvature S. Recall
that spaces of constant curvature are Euclidean if S = 0, round spheres if S > 0,
or (rescaled) hyperbolic spaces if S < 0. For example, Ṽ0(r) = ωnr

n. If we fix r,
then ṼS(r) is a decreasing function of S; as S → +∞, ṼS(r) goes to zero, and as
S → −∞, ṼS(r) goes to infinity.

If p ∈ M , we define the macroscopic scalar curvature at scale r at p to be the
number S so that Ṽ (p, r) = ṼS(r). We denote the macroscopic scalar curvature at
scale r at p by Scr(p). In particular, if Ṽ (p, r) is more than ωnr

n, then Scr(p) < 0,
and if Ṽ (p, r) < ωnr

n, then Scr(p) > 0.
By formula (∗), it’s straightforward to check that limr→0 Scalr(p) = Scal(p).
Let’s work out a simple example. Suppose that g is a flat metric on the n-

dimensional torus T n. In this case, the universal cover of (T n, g) is Euclidean space.
Therefore, we have Ṽ (p, r) = ωnr

n for each p ∈ T n and each r > 0. Hence Scr(p) = 0
for every r and p. If we had used volumes of balls in (T n, g) instead of in the universal
cover, then we would have Scr(p) > 0 for all r bigger than the diameter of (T n, g).
By using the universal cover, we arrange that flat metrics have Scr = 0 at every scale
r.
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Metaphor 3. The macroscopic scalar curvature is like the scalar curvature.

This metaphor leads to some deep, elementary, and wide open conjectures in
Riemannian geometry.

Generalized Geroch conjecture. (Gromov 1985) Fix r > 0. The n-dimensional
torus does not admit a metric with Scalr > 0.

The generalized Geroch conjecture is very powerful (if it’s true). Since the scalar
curvature is the limit of Scalr as r → 0, the generalized Geroch conjecture implies
the original Geroch conjecture. Taking a fixed value of r > 0, the generalized Geroch
conjecture implies the systolic inequality. Suppose that (T n, g) has systole at least
2. By the generalized Geroch conjecture, Sc1(p) ≤ 0 for some p ∈ T n. Therefore,
Ṽ (p, 1) ≥ ωn. Because the systole of (T n, g) is at least 2, it’s not hard to check that
Ṽ (q, 1) = V (q, 1) for every q ∈ T n. Therefore, we see that V (p, 1), the volume of the
ball around p of radius 1, is at least ωn. Hence the total volume of (T n, g) is also
at least ωn. To summarize, every metric on T n with systole ≥ 2 has volume ≥ ωn.
This is equivalent to the systolic inequality (with a very good constant).

The generalized Geroch conjecture is wide open. The generalized Geroch con-
jecture is considerably stronger than the original Geroch conjecture. It’s also more
elementary to state because it only involves the volumes of balls and not the curva-
ture tensor. The Geroch conjecture really appeals to me because it’s so strong and so
elementary to state, but I don’t see any plausible tool for approaching the problem.
See Appendix 1 for a comment about the difficulty.

Nevertheless, our third metaphor suggests a different approach to the systolic
inequality, adapting ideas from positive scalar curvature. In particular, I was able to
adapt the Schoen-Yau estimate for stable minimal hypersurfaces and prove a weak
version of generalized Geroch.

Non-sharp generalized Geroch. (Guth, 2009) For each n, there is a dimensional
constant S(n), so that T n admits no metric with Scal1 > S(n).

This result does not give a new proof of the Geroch conjecture. If we rescale it
to understand Scalr, we see that infp∈T n Scr(p) ≤ r−2S(n). If we then take the
limit as r → 0, we get nothing. Only an absolutely sharp estimate for Scal1 implies
the Geroch conjecture for scalar curvature. But this result does imply the systolic
inequality for the n-dimensional torus. The constant S(n) works out so that if (T n, g)
has systole at least 2, then some unit ball in (T n, g) has volume at least [8n]−n.

This technique gives the shortest proof of the systolic inequality for the n-dimensional
torus, but it’s not as powerful as other techniques. For example, recall that a mani-
fold M is called aspherical if πi(M) = 0 for all i ≥ 2. There is an old conjecture that
no closed aspherical manifold admits a metric with positive scalar curvature. The
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conjecture is open - the Schoen-Yau technique and other ideas about positive scalar
curvature have not been enough to prove it. Similarly, this approach to the systolic
inequality doesn’t work for all closed aspherical manifolds. But Gromov’s original
proof does give the systolic inequality for all closed aspherical manifolds. Arguably,
Gromov’s systolic inequality lends indirect evidence that aspherical manifolds cannot
have positive scalar curvature.

(There are many other techniques in the theory of scalar curvature which may
relate to the systolic inequality. For example, Gromov and Lawson proved the Ge-
roch conjecture for all dimensions n in 1979. Their proof also gives more geometric
information about (T n, g) than the Schoen-Yau proof. Their proof is based on Dirac
operators, and there is a key inequality relating the scalar curvature and the spec-
trum of Dirac operators. One might ask if there are inequalities relating Scr and
the spectrum of the Dirac operator, leading to a Gromov-Lawson approach to the
volumes of balls in Riemannian manifolds.)

4. Hyperbolic geometry

Let us return to dimension n = 2 and consider the systoles of surfaces with high
genus. There is a systolic inequality for surfaces of high genus, but it is not as strong
as you might expect. In the 1950’s, Besicovitch proved the following inequality.

Besicovitch systolic inequality. If (Σ, g) is a closed oriented surface with genus
G ≥ 1, then

Sys(Σ, g) ≤
√

2Area(Σ, g)1/2.

Let’s try to imagine a surface of large genus G with systole around 1. We could
start with G tori each with systole 1. Then we could cut out some disks from the
tori, each with circumference around 1, and glue the tori together along the seams.
If we glue the tori together in a string, then we get a surface of genus G with systole
around 1. Each of the tori had area ∼ 1, and so the total area of our surface is
around G. In this way, we get a surface with systole 1 and area around G.

It’s not at all obvious how to increase the systole of this surface while keeping the
area around G. On the other hand, the systole of this surface is much smaller than
Besicovitch’s inequality requires. The Besicovitch inequality only says that a surface
of area ∼ G must have systole at most ∼

√
G. We will see below that Besicovitch’s

inequality can be improved a great deal, but the surface we constructed above can
also be improved. There are surfaces with genus G, area G, and systole on the order
of logG. Buser and Sarnak [3] gave the first examples of such surfaces: arithmetic
hyperbolic surfaces. These surfaces are among the strangest and most interesting
examples in (Riemannian) geometry.
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Arithmetic Hyperbolic Surfaces. The isometry group of the hyperbolic plane is
PSL(2,R). If we take a discrete group Γ ⊂ PSL(2,R), then Γ acts on the hyperbolic
plane. Many groups Γ act freely, and for such Γ the quotient is a hyperbolic surface.

Arithmetic subgroups Γ ⊂ PSL(2,R) lead to particularly interesting surfaces from
the geometric point of view.

For example, define Γp ⊂ PSL(2,Z) to be the subgroup of matrices with modulo p
reduction equal to the identity (up to sign).

Γp =

{(
a b
c d

)
such that

(
a b
c d

)
= ±

(
1 0
0 1

)
modulo p

}
.

For large prime numbers p, Γp acts freely on the hyperbolic plane. The resulting
quotient is a non-compact surface with area ∼ p3 and genus ∼ p3.

This surface is not closed, but there are several tricks for modifying it to get a closed
surface. For example, one can attach small hemispherical caps onto each cusp. The
details are not important in this essay.

The arithmetic hyperbolic surfaces play a central role as counterexamples in Rie-
mannian geometry. Over the course of this essay, we have mentioned four strange
examples of Riemannian metrics. Arithmetic hyperbolic surfaces provide all four
strange examples.

1. Large systole. The surfaces constructed above have genus G, area ∼ G, and
systole ∼ logG. This beats the systole ∼ 1 for the simple examples built by gluing
together tori.

2. Hard to embed in Euclidean space. If (Σ, g) is a genus G arithmetic hyperbolic
surface, and Ψ is an embedding from (Σ, g) to RN , then the bilipschitz constant of
Ψ is at least c logG. This estimate does not depend on the dimension N .

Arithmetic hyperbolic surfaces can also be used to construct strange metrics in
higher dimensions. For example, let us construct a strange metric on T 3. A surface
of any genus may be embedded into T 3. A neighborhood of an embedded surface Σ
will be diffeomorphic to Σ × (−1, 1). On this neighborhood, we can use a product
metric, where the metric on Σ comes from an arithmetic hyperbolic surface, and the
metric on (−1, 1) is the standard metric with length 2. Then we extend this metric
to the rest of T 3 in such a way that most of the volume is contained in the Σ×(−1, 1)
region.

3. This metric provides a counterexample to the third naive conjecture in the
introduction. It has volume ∼ G, but if we take any map F : (T 3, g)→ R, then one
of the level sets will have area at least ∼ G also. Similar constructions give metrics
on T 3 that are hard to embed in Euclidean space.

4. Gromov and Katz constructed metrics on Sn × Sn with large “n-dimensional
systoles”, as described in the introduction. Their original construction did not use
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arithmetic hyperbolic surfaces, but later Freedman constructed metrics with even
stronger properties than the Katz-Gromov examples, and Freedman’s construction
is powered by arithmetic hyperbolic surfaces [8].

Arithmetic hyperbolic surfaces are remarkably hard to picture. When I meet a
mathematician who studies the geometry of surfaces, I often ask them if they have
any ideas about visualizing arithmetic hyperbolic surfaces. They just laugh. Part of
the problem is that the systole of an arithmetic hyperbolic surface is only ∼ logG.
That means that to get interesting behavior, we need to look at huge values of G.
Naturally, it is not easy to imagine a surface of genus 106. Also, many of us try
to visualize Riemannian surfaces as surfaces in three-dimensional Euclidean space.
Arithmetic surfaces embed extremely poorly into Euclidean space, so this strategy
does not work well.

Another possible strategy to get a handle on arithmetic hyperbolic surfaces is to
cut them into simpler pieces. The most common way to cut a surface into simpler
pieces is called a pants decomposition. A pair of pants is a surface homeomorphic
to a sphere with three boundary components. A pants decomposition of a genus G
surface is a set of disjoint simple closed curves on the surface whose complement is
a union of pairs of pants. How hard is it to cut an arithmetic surface into pairs of
pants? For several months, I’ve been thinking about how long the curves need to be
in a pants decomposition of a genus G arithmetic surface. Buser constructed a pants
decomposition of any genus G hyperbolic surface using curves of length . G. On
the other hand, the curves in a pants decomposition must be larger than the systole
∼ logG. I cannot rule out a pants decomposition with curves of length . logG,
but I cannot construct a pants decomposition with curves shorter than G. There
is a tremendous gap between G and logG, and the size of this gap testifies to my
extreme difficulty visualizing arithmetic hyperbolic surfaces.

Arithmetic hyperbolic surfaces are a good example of how algebraic objects have
interesting geometric properties. See Arnold’s essay [2] on the topological efficiency
of algebraic objects for more thoughts and perspectives.

Returning to systoles, we have seen that a surface of genus G and area G may
have systole around logG. It turns out that the systole cannot be bigger than that.

High genus systolic inequality. (Gromov) Suppose that Σ is a closed surface of
genus G ≥ 2 with Riemannian metric g.

Sys(Σ, g)

logG
≤ C

(
Area(Σ, g)

G

)1/2

.

This estimate was proven by Gromov in Filling Riemannian manifolds.
So far we’ve talked about the systoles of some special hyperbolic metrics. Now

I want to go on to a more surprising side of the story: using hyperbolic geometry
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to study the systoles of arbitrary metrics. Starting in the 70’s mathematicians used
hyperbolic geometry to prove purely topological theorems about hyperbolic manifolds.
An important example is the following estimate of Milnor and Thurston.

Triangulation estimate. (Milnor-Thurston) Let (Mn, hyp) be a closed hyperbolic
manifold with volume V . Then it requires at least cnV simplices to triangulate M .

The triangulation estimate has a short, striking proof, which is called the simplex
straightening argument. See Chapter 5 of [10] for Gromov’s vivid recollection of
learning about the simplex straightening argument.

Philosophically, the Milnor-Thurston result says that a closed hyperbolic manifold
with large volume is topologically complicated. Therefore, if you want to build one
using topologically simple pieces, you will need a lot of pieces. Here is the analogy
between the Milnor-Thurston theorem and the systole problem. Let us suppose that
g is a metric on the above manifold M with Sys(M, g) ≥ 10, and consider the
unit balls in (Mn, g). It’s easy to check that any curve γ contained in a unit ball
B ⊂ (Mn, g) is contractible. Now since (Mn, g) has no higher homotopy groups, it
follows that each unit ball is contractible in M . Roughly speaking, the condition
Sys(M, g) ≥ 10 forces each unit ball of (Mn, g) to be topologically fairly simple.
Since M is topologically complicated, it should take a lot of simple pieces to cover
M , and so one might hope that the volume of (Mn, g) is large.

Metaphor 4. The systolic inequality for hyperbolic manifolds of large volume is
like the Milnor-Thurston triangulation estimate, but the triangles are replaced by
contractible metric balls.

Following roughly this philosophy, Gromov was able to generalize the high genus
systolic inequality to hyperbolic manifolds of all dimensions.

Systolic inequality for hyperbolic manifolds of large volume. (Gromov 1983)
Let (Mn, hyp) be a closed hyperbolic manifold with volume V > 2. Let g be any metric
on Mn. Then g obeys the following systolic inequality:

Sys(M, g)

log V
≤ Cn

(
V ol(M, g)

V

)1/n

.

A 2-dimensional surface of genus G ≥ 2 can be given a hyperbolic metric with
volume 2π(2G − 2) ∼ G. So as a special case of this theorem, we get the systolic
inequality for 2-dimensional surfaces of high genus stated above. But Gromov’s
theorem above applies to surfaces of all dimensions.

The systolic inequality for hyperbolic manifolds is the hardest theorem in systolic
geometry. The Milnor-Thurston inequality plays a crucial role, but the proof is not
by any means just an adaptation of their proof.
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Unfortunately, there is no expository account of the proof of the hyperbolic systolic
inequality. Readers may consult Chapter 6.4 of Filling Riemannian manifolds [9] or
Sabourau’s paper [26].

5. Appendix 1: Issues of symmetry

Good mathematical problems often have a lot of symmetry, and the proofs often
find and exploit that symmetry. Are there any useful symmetries in the systole
problem? I don’t see any obvious symmetries. In fact, in systolic geometry, we have
to look at some non-symmetric variants of well-known geometry problems. The lack
of symmetry is one of the main issues that makes the problems hard.

For example, in Section 1 we saw that the systolic inequality is related to gen-
eral isoperimetric inequalities in the Banach space L∞. The general isoperimetric
inequality in Euclidean space of unbounded dimension was proven by Michael-Simon
and later by Almgren. One special feature of Euclidean space is that it’s very sym-
metric, and this symmetry leads to algebraic formulas that work out nicely. For
example, the monotonicity formula for minimal surfaces comes from a calculation
that works out nicely in Euclidean space. The same calculation doesn’t work out
nicely in L∞, and there probably is no monotonicity formula for minimal surfaces in
L∞. This monotonicity formula is the main ingredient in the Michael-Simon proof
of the isoperimetric inequality. Gromov had to find a different proof, robust enough
to work in non-symmetric spaces.

Here’s an example I find even more striking. Let PL∞ denote the projectivization
of L∞. In other words, PL∞ is the unit sphere in L∞ modulo the action of the
antipodal map. Topologically, PL∞ is homotopy equivalent to RP∞. The metric on
L∞ induces a metric on PL∞.

We should compare the space PL∞ and its metric with the standard metric on
real projective space. Consider the unit sphere in Euclidean space RN+1. Take the
quotient of the unit sphere by the antipodal map. The resulting manifold is RPN

and the resulting metric is called the Fubini-Study metric. The Fubini-Study metric
is preserved by group of rotations of RN+1 so it has a large group of symmetries.

The space PL∞ is much less symmetrical, but it has an important universal prop-
erty. Recall that the Banach space L∞ has a universal property: every compact
metric space embeds isometrically in L∞. Gromov discovered that PL∞ has an even
more striking universal property.

Universal property of PL∞. (Gromov 1983) Suppose that (RPn, g) has systole at
least 2. Then there is a 1-Lipschitz map from (RPn, g) into PL∞, homotopic to the
standard inclusion RPn ⊂ RP∞.

(Recall that a map is 1-Lipschitz if it decreases all distances.)
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Using filling radius techniques, Gromov gave an estimate for the volume of non-
trivial cycles in PL∞.

Volumes of cycles in PL∞. (Gromov 1983) Any homologically non-trivial n-cycle
in PL∞ must have volume at least cn > 0.

Combining the volume estimate and the universal property of PL∞, we see that
any metric on RPn with systole at least 2 has volume at least cn > 0, which is a
systolic inequality for real projective space. Gromov used his proof of the systolic
inequality to prove this volume estimate. But if one had an independent proof of
the volume of cycles estimate in PL∞, then we would get a new proof of the systolic
inequality for real projective space.

There’s a fifth potential metaphor that comes into play here. In the early 1970’s,
Berger and Chern studied the volumes of cycles in RPN with the Fubini-Study metric.
To do so, they used (a variant of) the calibration method invented by de Rham.

Calibration estimate. (Berger-Chern) Let (RPN , gFS) denote the real projective
N-space with the Fubini-Study metric. If zn ⊂ RPN is any homologically non-trivial
n-cycle, then the volume of z is at least the volume of a linear copy of RPn ⊂ RPN .
The lower bound for V ol(z) is one half the volume of the unit n-sphere. In particular
it does not depend on N .

Gromov’s volume estimate for cycles in PL∞ is analogous to this calibration esti-
mate. We can think of this as a fifth metaphor.

Metaphor 5. The systolic inequality for real projective space is like the Berger-Chern
calibration estimate on PL∞.

Here is a sketch of the Berger-Chern argument. Let PN−n be a plane in RPN of
codimension n. (In other words, P is a linear copy of RPN−n ⊂ RPN .) Since z is
homologically non-trivial, the topological intersection number of P and z is 1 (mod
2). Therefore z and P intersect at least once. For comparison, let L be a linear copy
of RPn ⊂ RPN . The linear space L intersects almost every N−n plane exactly once.
Hence, for almost every P , z intersects P at least as often as L intersects P . Finally,
the Crofton formula tells us that the volume of any n-dimension surface is equal to a
fixed constant times the “average” number of intersections of the surface with N −n
planes P .

The Crofton formula is a direct consequence of the symmetry of real projective
space (with the Fubini-Study metric). To define the “average” intersection number,
we need to define a probability measure on the space of (N −n)-planes in RPN . The
rotation group acts transitively on the space of planes. As a compact group, the
rotation group has a natural probability measure (the Haar measure), which pushes
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forward to give a unique rotationally-invariant measure on the space of (N − n)-
planes. With this measure, many calculations about “averages” over the (N − n)-
planes work out nicely because of the underlying symmetry. The Crofton formula is
a typical example. Trying to adapt the calibration argument to PL∞, we meet the
lack of symmetry head on, and it’s not clear to me whether the argument can be
adapted or not.

There is another side to the symmetry story that I want to mention. The systole
and the other geometric invariants we have discussed here are extremely robust. For
example, they are stable under bilipschitz changes of the metric.

Bilipschitz robustness of the systole. Let (Mn, g) be a Riemannian manifold.
Let h be another metric on M which is L-bilipschitz equivalent to g. (This means
that a curve of g-length 1 has h-length between L−1 and L.)

Then L−1Sys(h) ≤ Sys(g) ≤ LSys(h).

This robustness is a kind of approximate symmetry of the systole. I can make a
3-bilipschitz change of the metric, and the systole of the new metric will agree with
the old systole up to a factor of 3. Let me explain how this is like a symmetry.
Suppose I had an actual symmetry group for the systole problem. For each element
α of the symmetry group, I could take any metric g and turn it into a new metric αg
with the same systole and the same volume. I could try to use the symmetry group
to attack the systole problem as follows: I start with an arbitrary metric g whose
systole I want to estimate. Then I carefully choose α so that αg is more convenient
or more standard than g or has some nice property. Finally, I estimate the systole of
αg. Now I don’t know of any useful group of symmetries for the systole problem. In
other words, I don’t know any operations α that I can perform to change the metric
g without changing the systole or the volume. But the bilipschitz robustness of the
problem means that there are lots of changes I can make to g that don’t change the
systole or the volume very much.

This robustness is the main symmetry of the systole problem as far as I can see.
Most of the techniques of systolic geometry aim to exploit it. They don’t exactly use
the bilipschitz robustness stated above, but they use something in a similar spirit.
Because the systole is very robust, we can perturb a situation to something simpler
and more tractable at the cost of losing a constant factor. For this reason, almost
every argument in systolic geometry has a non-sharp constant.

Symmetry is very important in mathematics, and this approximate symmetry or
robustness is the only symmetry I know in the systolic problem. On the bright
side, systolic geometry has a pretty well-developed system for exploiting this kind
of approximate symmetry and proving estimates with non-sharp constants. On the
dark side, the techniques we have so far offer little for proving sharp estimates. For
example, we have no idea how to approach the generalized Geroch conjecture.
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6. Appendix 2: Complexity of the space of metrics

In this section, I want to say a little bit about the work of Nabutovsky on the
complexity of the space of metrics. It’s remarkable work in metric geometry, and it
gives some insight into the difficulty of proving estimates like the systolic inequality.

I’m going to discuss a cousin of the systolic inequality: Berger’s isoembolic inequal-
ity. Suppose that g is a metric on Sn. Following Berger, we define the isoembolic
ratio I(g) as follows:

I(g) :=
V ol(Sn, g)1/n

InjRad(Sn, g)
.

The ratio I(g) is scale invariant : it does not change if we rescale the metric g.
Berger proved that the isoembolic ratio is minimized by round metrics on Sn.

Isoembolic inequality. (Berger, 1980, [4]) Let g0 denote the unit sphere metric on
Sn. Let g denote any metric on Sn.

Then I(g) ≥ I(g0). In other words, if g and g0 have the same injectivity radius,
then V ol(g) ≥ V ol(g0).

We are going to discuss possible ways of proving the isoembolic inequality. To set
the stage, let’s recall the Steiner symmetrization proof of the classical isoperimetric
inequality. One begins with a domain U ⊂ Rn, and repeatedly modifies it. With
each modification, the domain becomes more symmetric, and its isoperimetric ratio
improves. In the limit, the domain converges to a round ball. Since the isoperimet-
ric ratio improved with each step, we can conclude that the isoperimetric ratio of
the original domain was worse than the ratio of the ball, proving the isoperimetric
inequality.

This kind of argument appears often in geometry today. For example, in Perel-
man’s work on the Ricci flow, one of the minor results is a new proof of the Gauss-
ian logarithmic Sobolev inequality in Euclidean space. The Gaussian logarithmic
Sobolev inequality is a variant of the usual Sobolev inequality, and so it is a cousin
of the usual isoperimetric inequality. For the purposes of this paper, I think it’s
most helpful to describe the Gaussian log Sobolev inequality roughly, leaving out the
equations. The Gaussian log Sobolev inequality concerns some ratio S(f) where the
numerator is an integral involving |f | and the denominator is an integral involving
|∇f |. In Perelman’s argument, we begin with an arbitrary non-negative function f ,
and we apply a slightly modified heat flow to f , giving a family of functions ft. Over
time, the functions ft become more and more symmetric, converging to a standard
Gaussian γ. Also, the ratio S(ft) decreases monotonically. We then conclude that
S(f) is at least S(γ), which is the Gaussian log Sobolev inequality. (The inequality
for non-negative f implies the inequality for all f by a pretty easy argument.)
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It looks tempting to apply this kind of argument to prove the isoembolic inequality.
The sharp constant in the isoembolic inequality comes from the round sphere. Can
we begin with a metric g on Sn and gradually make it more symmetric until it
converges to a round metric while improving the relevant ratio monotonically? In
dimensions n ≥ 5, the answer is absolutely not.

Nabutovsky huge mountain pass theorem. (weak version, [24]) Let n ≥ 5 and
let B be any sufficiently large number. Then there is a metric g on Sn so that I(g) ≤
B, and yet any path gt from g to a round metric must have I(gt) ≥ exp(exp(B)) for
some value of t.

The “mountain pass” refers to the geometry of the graph of the isoembolic ratio
I. The metric g given by Nabutovsky’s theorem has “height” ≤ B - it’s moderately
high. To get from there to the unit sphere metric, one needs to first go up to a very
high height exp(exp(B)), and then come back down - one needs to go over a huge
mountain range separating g from the familiar round metrics.

Let’s compare the Gaussian logarithmic Sobolev inequality and the isoembolic
inequality. The Gaussian logarithmic Sobolev ration S(f) is defined on the space
of functions on Rn. The isoembolic ratio I(g) is defined on the space of metrics on
Sn. The GL Sobolev inequality says that S(f) attains its minimum at the standard
Gaussian. The isoembolic inequality says that I(g) attains its minimum at the round
metric of any radius. The Gaussian is a very symmetrical function, and the round
metrics are the most symmetric metrics on Sn. So far, everything looks similar. But
now, let’s move our attention from the minimizer of the ratio to the graph of the
ratio. Perelman’s proof shows that the Gaussian logarithmic Sobolev inequality has
only one local minimum. Its graph looks something like the surface of a parabololoid.
The isoembolic ratio has infinitely many local near-minima. These local near-minima
can be extremely deep: to get from a local minimum at height I down to the global
minimum, one may need to first go up to a ridiculous height like exp(exp(I)). The
graph of the isoembolic ratio looks something like the craggy rocks on the bottom of
the sea.

This theorem of Nabutovsky lies near the beginning of a large theory, contin-
ued in joint work of Nabutovsky and Weinberger and still ongoing. The theory
is much stronger and more general than what I’ve presented here. The function
exp(exp(I(g))) may be replaced by any computable function of I(g). Also, the theo-
rem applies not just to injectivity radius and volume but to many other setups. See
[25] for more information.

However, it is unknown whether the Nabutovsky theorem for injectivity radius has
an analogue for systoles. We may define a systolic ratio for metrics on T n as follows:
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SR(T n, g) :=
V ol(T n, g)1/n

Sys(T n, g))
.

The systolic inequality tells us that the infimum of SR(T n, g) is positive. We
know that the infimal value is at most ∼ n−1/2 and is at least [8n]−1. But besides the
minimal value, we know basically nothing about the graph of the function SR. For
example, one has the following open question in the spirit of the work of Nabutovsky
and Weinberger.

Open Question. Given a metric on T 5 with systole 1 and volume V , can it be
deformed to the unit cube metric on T 5 while keeping the systole at least 1, and
without increasing its volume too much?

The Nabutovsky metrics are constructed using logic. Roughly speaking, the shape
of (Sn, g) encodes an algorithmic problem which is known to be extremely difficult,
and a path gt from g to the round metric encodes a solution to the problem. By
logic, one knows that the solution must be very long and complicated. Nabutovsky
is able to reinterpret this geometrically to show that I(gt) must be extremely large
for some t.

7. Going from two dimensions to three dimensions

In the first versions of this essay, I didn’t mention two dimensions versus three
dimensions. Then I decided to try to explain why the systolic inequality is difficult
to prove. The two-dimensional version was proven in the 40’s, and so I tried to say
why the three-dimensional version is harder. Later, I was trying to give some context
about the Geroch conjecture, so I mentioned how to prove it in two dimensions using
Gauss-Bonnet. Again, the three-dimensional version is much harder. On the third
or fourth draft I noticed a simple thing. Almost all of the mathematicians we have
been discussing were trying to generalize a result from two dimensions to higher
dimensions.

In minimal surface theory, Douglas, Rado, and others solved the two-dimensional
Plateau problem: they proved the existence of minimal two-dimensional surfaces
with prescribed boundary. Federer and Fleming generalized this result to higher
dimensions. To do so, they invented the general isoperimetric theory described in
Section 1. In the 19th century, Jurgens proved the topological invariance of dimension
for R1 and R2. Brouwer generalized topological invariance to higher dimensions, as
discussed in Section 2. The two-dimensional version of the Geroch conjecture was
proven by Bonnet in the 19th century. Schoen and Yau generalized it to higher
dimensions, as discussed in Section 3. The possible degrees of maps from one (two-
dimensional) surface to another were classified by Kneser in the 1930’s. Thurston
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and Milnor generalized Kneser’s results to three and more dimensions. To do so,
they invented simplex straightening and proved the triangulation estimate discussed
in Section 4. Loewner proved the systolic inequality in two dimensions in the late
40’s. In the early 80’s, Gromov generalized it to dimensions three and higher. To
do so, he invented all of the metaphors in this essay. I don’t know how Gromov
discovered the metaphors in this paper. Perhaps he looked for guidance from other
mathematicians who managed to generalize important results from two dimensions
to higher dimensions?

Three-dimensional surfaces are far more complicated than two-dimensional sur-
faces. Here are some well-known reasons. First, a curved three-dimensional surface
is much harder to visualize than a curved two-dimensional surface. Second, the curva-
ture tensor of a Riemannian three-manifold has six degrees of freedom at each point,
compared to only one degree of freedom for a Riemannian two-manifold. Third, there
is an explosion in the topological types of closed three-manifolds as opposed to closed
two-manifolds. Because of the last two points, there are many strange metrics on
three-dimensional manifolds giving counterexamples to naive conjectures. Finally, it
is very difficult to find “useful” parametrizations of Riemannian three-manifolds -
whereas the uniformization theorem gives useful parametrizations for two-manifolds
in a wide variety of problems. In spite of all this complexity, a significant portion
of two-dimensional geometric theorems remain true in higher dimensions, even when
the original proofs don’t generalize. Can one find some fundamental geometric fea-
tures that survive the passage from two dimensions to three dimensions and which
tie together (some of) the subjects discussed in this essay?

To close this essay, let me mention an open problem that marks the edge of my
understanding of metric geometry of three-dimensional surfaces.

Naive conjecture 4. If g is a Riemannian metric on T 3, then there is a function
f : T 3 → R2 so that for every y ∈ R2, the length of the fiber f−1(y) is controlled by
the volume of g

Length[f−1(y)] ≤ CV ol(T 3, g)1/3.

This is a naive conjecture that fits into the list of naive conjectures in the introduc-
tion. As a naive conjecture about three-dimensional metrics, it is probably false, but
no one knows yet. The first place to look for counterexamples is among the metrics
coming from arithmetic hyperbolic surfaces. I don’t know whether these metrics are
counterexamples or not. To get started, one would need to analyze the lengths of
curves in a pants decomposition of an arithmetic surface, as discussed in Section 4.
There may be other counterexamples. Mathematicians have not spent that much
time collectively trying to build strange metrics, and I suspect that many interesting
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examples are yet to be found. The work of Nabutovsky and Weinberger gives some
perspective on the difficulty of looking for examples.

On the other hand, Naive Conjecture 4 may be true. This conjecture easily implies
the systolic inequality on T 3. It is a much stronger quantitative inequality than what
comes from the methods described in this essay. Although the question is elementary
to state, I don’t have any perspective on how to get started...
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