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Abstract. We discuss recent work of Chambers, Dotterrer, Ferry, Manin, and Weinberger, which
resolved a fundamental question in quantitative topology: if f : Sm → Sn is a contractible map

with Lipschitz constant L, what can we say about the Lipschitz constant of a null-homotopy of
f?

In the mid-90s, Gromov wrote an article on quantitative topology [G], raising a number of
interesting questions. We will focus on the following question.

Question 0.1. Equip Sm and Sn with the unit sphere metrics, and suppose that f : Sm → Sn is a
contractible map with Lipschitz constant L. What is the best Lipschitz constant of a null-homotopy
H : Sm × [0, 1]→ Sn?

For a long time, little was known about this question. In some simple cases, there were good
estimates. For general m and n, Gromov sketched a construction giving a homotopy H with
Lipschitz constant at most

exp(exp(...(expL)...)),

where the height of the tower of exponentials depends on the dimensions m and n [G]. On the
other hand, he suggested that there may always be a homotopy with Lipschitz constant at most
C(m,n)L. I thought about the problem a number of times but couldn’t see any way to get started.
Recently, the problem was almost completely solved by work of Chambers, Dotterrer, Ferry, Manin,
and Weinberger. Here are their results.

Theorem 0.2. ([CDMW]) Suppose that n is odd and f : Sm → Sn is a contractible map with
Lipschitz constant L. Then there is a null-homotopy H : Sm × [0, 1]→ Sn with Lipschitz constant
at most C(m,n)L.

Theorem 0.3. ([CMW]) Suppose that n is even and f : Sm → Sn is a contractible map with
Lipschitz constant L. Then there is a null-homotopy H : Sm × [0, 1]→ Sn with Lipschitz constant
at most C(m,n)L2.

More precisely, there is a null-homotopy H which is C(m,n)L-Lipschitz in the Sm-direction and
C(m,n)L2-Lipschitz in the [0, 1]-direction. In other words:

distSn(H(x1, t1), H(x2, t2)) ≤ C(m,n)
(
LdistSm(x1, x2) + L2|t1 − t2|

)
.

When n is even, it is still an open question whether there is a null-homotopy H with Lipschitz
constant at most C(m,n)L. Nevertheless, these results are a huge improvement over what was
known before. They give a near complete solution to a fundamental problem.

Question 0.1 lies on the border between algebraic topology and metric geometry. It is an inventive
variation on the theme of the isoperimetric inequality in the domain of homotopy theory. The proof
involves ideas from both areas. On the homotopy theory side, it uses Serre’s classification of the
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rational homotopy groups of spheres, as well as ideas from obstruction theory. On the metric
geometry side, it uses estimates related to the isoperimetric inequality. One of the key observations
in the proof is that the traditional isoperimetric inequality is connected to this more unusual
homotopy-theoretic variation on the isoperimetric inequality.

The theorems in [CDMW] and [CMW] are more general than what we stated here. Using the
more general theorem, Chambers, Dotterrer, Manin, and Weinberger give a nice application to
a quantitative version of cobordism theory. But in this article I want to focus on the simplest
statements. Our main goal will be to give a detailed sketch of the proof of Theorem 0.2. By
focusing on this simplest case, we will be able to avoid some of the technical issues that appear in
the more general theorem, while still explaining some of the key new ideas.

In the first section, I will describe some previous approaches to the problem, and try to give a
sense of why it seemed difficult to me. In the second section, I will explain the new ideas from
[CDMW] and give a detailed sketch of the proof of Theorem 0.2. In the last section, I will speculate
on further directions and open problems.

Notation. We willl write A . B to mean that there is a constant C(m,n) so that A ≤ C(m,n)B.
Acknowledgements. I would like to thank Sasha Berdnikov who read an earlier draft and made

a number of helpful suggestions.

1. Background and previous approaches

In this section we will discuss some previous approaches to the quantitative null-homotopy prob-
lem. We will see some simple cases where good bounds had been proven already, and try to build up
some intuition for the problem. One of the themes is taking ideas from topology and making them
more quantitative. In some cases, when we quantify a classical argument from topology, it leads to
good bounds. But in other cases, it leads to bounds that seem far from optimal. In particular, we
will indicate where the tower of exponentials in Gromov’s bound comes from.

1.1. Maps Sm to Sn when m < n. The first case we consider is the case when the dimension of
the domain Sm is smaller than the dimension of the range Sn. In this case, every map f : Sm → Sn

is contractible. We start by recalling the proof and then we develop a quantitative version of the
argument.

Proposition 1.1. If m < n and f : Sm → Sn is a continuous map, then f is contractible.

Proof. The complement of a point in Sn is contractible. Therefore, if any non-surjective map to Sn

is contractible. Since m < n, we may hope that f : Sm → Sn is non-surjective. However, we have
to be careful here. Using Peano’s construction of a space filling curve, one can construct continuous
surjective maps f : Sm → Sn as long as m ≥ 1. We first homotope f to a smooth or piecewise
linear map f̃ . The map f̃ : Sm → Sn is non-surjective, and so it is contractible. �

Now suppose that f : Sm → Sn has Lipschitz constant L. We would like to adapt the argument
above to produce a null-homotopy with controlled Lipschitz constant. Because f is Lipschitz, it is
not surjective. The standard proof that f is not surjective gives a quantitative estimate which we
record here as a lemma.

Lemma 1.2. If m < n and f : Sm → Sn has Lipschitz constant L, then the image of f misses a
ball of radius r for r & L−

m
n−m .

Proof. For any ρ > 0, Sm can be covered by ∼ ρ−m balls of radius ρ. The image of each such ball
is contained in a ball of radius Lρ. Therefore, the image of f is contained in . ρ−m balls of radius
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Lρ. We set r = Lρ. We can also say that the r-neighborhood of the image of f is contained in
. ρ−m balls of radius 2r = 2Lρ. We have to check that these balls cannot cover all of Sn. Their
total volume is . ρ−m(Lρ)n = Lnρn−m. We choose ρ so that this number is smaller than 1. So we
get

ρ ∼ L−
n

n−m ,

r ∼ Lρ ∼ L−
m

n−m .

�

We recalled above that the complement of a point in Sn is contractible. If we remove a ball from
Sn, the leftover part can be contracted in a Lipschitz way.

Lemma 1.3. For each radius r, there is a contraction G : Sn \Br× [0, 1]→ Sn \Br with Lipschitz
constant at most 1/r. More precisely, G has Lipschitz constant . r−1 in the Sn direction and . 1
in the [0, 1] direction.

Proof. (proof sketch) We describe the sphere Sn using polar coordinates around a point p. The
coordinates are (ρ, θ) ∈ [0, π]× Sn−1, and the standard spherical metric is

ds2 = dρ2 + (sin ρ)2dθ2.

We choose the point p to be the antipode of the center of Br, so that in our coordinates, the
domain Sn \Br is given by ρ ∈ [0, π − r]. Now we write down our map

G(ρ, θ, t) = ((1− t)ρ, θ).
Clearly G(ρ, θ, 0) = (ρ, θ), and G(ρ, θ, 1) = p.
To check the Lipschitz constant of G, we compute the derivative of G and then compute sup |dG|.

It’s not hard to check that this supremum is achieved when the boundary of Br passes over the
equator: i.e. when ρ = π − r and t solves

(1− t)ρ = π/2.

At this point,

|dG| = sin(π/2)

sin(π − r)
= (sin r)−1 ∼ r−1.

Computing the derivative of G in the t-direction, we see that |∂tG| ≤ ρ ≤ pi, and so G has
Lipschitz constant . 1 in the t direction.

�

Remark. It is a good exercise to prove that any null-homotopy of Sn \Br has Lipschitz constant
& 1/r.

We can now build a null-homotopy of f . We know that the image of f lies in Sn \ Br for

r ∼ L−
m

n−m . We use the map G to contract this region. So our final homotopy H is the composition
of G with f × id. The Lipschitz constant of H is at most

LipH ≤ LipG · Lip f . L
m

n−mL = L
n

n−m .

This construction, however, is not optimal. In fact the following better estimate holds.
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Proposition 1.4. If m < n and f : Sm → Sn has Lipschitz constant L, then there is a null-
homotopy with Lipschitz constant . L. In fact the null-homotopy has Lipschitz constant . L in
the Sm directions and . 1 in the [0, 1] direction.

Looking back at the proof that f : Sm → Sn is contractible, there was a step where we ap-
proximate the map f with a smooth or piecewise linear map. We can get our better quantitative
estimate by really incorporating that idea. We do so using simplicial approximation. This simplicial
approximation idea will be useful all through the paper.

Let TriL be a triangulation of Sm into simplices which are bilipschitz to equilateral simplices of
side length ∼ 1

L , with bilipschitz constant ∼ 1. We will refer to this in the future as a triangulation

into standard simplices of side length ∼ 1
L . We will have to be a bit more precise about the side

length: let the side length be at most c(m,n)
L for a small constant c(m,n) to be chosen later. Let

TriSn be the triangulation of Sn as the boundary of the (n+ 1)-simplex. Simplicial approximation
gives a controlled homotopy from (Sm,TriL) to (Sn,TriSn).

Lemma 1.5. (Simplicial approximation) For any dimensions m and n, suppose that f : Sm → Sn

has Lipschitz constant L. Let TriL be as in the previous paragraph. Then there is a simplicial
map fsimp from (Sm,TriL) to (Sn,TriSn) and a homotopy Hsimp : Sm × [0, 1] → Sn so that H is
. L-Lipschitz in the Sm direction and . 1-Lipschitz in the [0, 1] direction.

Remark. We use (Sm,TriL) to denote the simplicial complex given by the triangulation TriL.
It is not a pair in the sense of relative homology, etc. By a simplicial map from (Sm,TriL) to
(Sn,TriSn), we just mean a simplicial map from one simplicial complex to the other.

Proof. (proof sketch) We recall the construction of the simplicial approximation, following Hatcher
[H], Section 2C, page 177-178. If v is a vertex of TriL, we let St v denote the closed star of v, the

union of all closed simplices of TriL containing v. We see that St v is contained in a c(m,n)
L ball in Sm

and so f(St v) lies in a c(m,n)-ball in Sn. By choosing c(m,n) small enough, we can guarantee that
any such ball lies in the open star of some vertex fsimp(v) in TriSn . Then [H] explains that fsimp

extends to a simplicial map from (Sm,TriL) to (Sn,TriSn) and that for each point x ∈ Sm, f(x) and
fsimp(x) lie in a common simplex of (Sn,TriSn). We can define Hsimp by taking the straight-line
homotopy from f(x) to fsimp(x) inside this simplex. The Lipschitz constant of fsimp is at most
C(m,n)L, and so the Lipschitz constant of this straight-line homotopy is at most C(m,n)L in the
Sm direction and at most C(m,n) in the [0, 1] direction. �

To get a more efficient contraction of f : Sm → Sn, we first simplicially approximate f using
Lemma 1.5. The map fsimp has image in the m-skeleton of (Sn,TriSn). If m < n, fsimp misses a
ball of radius ∼ 1 in Sn. Applying our previous strategy to fsimp, we get an efficient null-homotopy
of f , proving Proposition 1.4.

Remark. Simplicial approximation is a key tool in the proof of Theorem 0.2. The rest of the
topics in our background discussion will not be needed later, so the reader who is interested in
getting to the proof of Theorem 0.2 can jump from this point to Section 2.

1.2. Maps between spheres of the same dimension. Next we consider maps from Sn to Sn.
Brouwer defined the degree of a map f : Sn → Sn and he proved that f is contractible if and only
if the degree of f is zero. When the degree of f is zero, Brouwer constructed a null-homotopy of f .
By using Brouwer’s construction and adding quantitative bounds, Gromov was able to prove the
following result (personal communication).
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Proposition 1.6. If f : Sn → Sn has degree zero and Lipschitz constant L, then f extends to a
map H : Bn+1 → Sn with Lipschitz constant . L.

By the simplicial approximation argument in Lemma 1.5, we can assume without loss of generality
that f is a simplicial map from (Sn,TriL) to (Sn,TriSn). Recall that TriL is a triangulation into
standard simplices of side length ∼ 1/L and TriSn is the triangulation of Sn as the boundary of
the (n+ 1)-simplex.

Let us quickly recall the definition of the degree. Let y be a point in the center of one of the
top-dimensional faces of the target (Sn,TriSn). Since f is simplicial, the preimage f−1(y) is a finite
subset of the domain (Sn,TriL), consisting of at most one point in each top dimensional simplex,
and no points in lower dimensional simplices. Near each point xi ∈ f−1(y), the map f is either
orientation-preserving or orientation-reversing, and we assign each point a multiplicity ±1 based
on the orientation. The degree of f is defined to be the sum of these multiplicities.

Suppose f has degree zero. The first step of Brouwer’s construction is to build a collection of
closed arcs γi in Bm+1 each going from a positive point of f−1(y) to a negative point of f−1(y),
in such a way that each point of f−1(y) lies in exactly one arc. To give a quantitative version of
Brouwer’s construction, the main new ingredients is to choose these arcs so that they don’t come
too close to each other.

Lemma 1.7. Suppose that {xi,+}i=1,...,I and {xi,−}i=1,...,I are finite sets in Sn, with at most one
point in any ball of radius ∼ 1/L. Then there are curves γi ⊂ Bn+1, so that γi connects xi,+ to
xi,− for each i, and the distance between any two curves γi is & 1/L.

This lemma was proven by Kolmogorov and Barzdin [KB] in the case n = 2. It is a special case
of their construction of thick embeddings of graphs into the ball. The case n = 2 is the hardest
case, and their proof works in higher dimensions as well. The case n = 1 is different but easier. We
will come back to discuss the proof of the lemma, but first sketch how to use it.

By straightening out the curves γi, we can arrange that each γi is a sequence of geodesic segments
of length ∼ 1/L, and the distance between any two non-consecutive segments is & 1/L. The next
step is to thicken each curve γi to a thin tube Ti. The tube Ti intersects the boundary Sn in disks
around xi,+ and xi,− of radius & 1/L. We can assume that f maps each of these disks onto the
ball B 1

10
(y) in the target Sn. The whole tube Ti has thickness 1/L and it is C(n)-bilipschitz to a

cylinder Bn(1/L) × [0, `i] where `i is the length of γi. Next we define H on each tube Ti so that
H maps Ti to B1/10(y) and maps ∂Bn × [0, 1] to the boundary of that ball. So far, the Lipschitz
constant of H is . L.

Let X denote Bn+1 \ ∪Ti. We have defined H on the boundary of X and it remains to define H
on the interior of X. Note that H maps the boundary of X to Sn \B1/10(y), which is contractible,
and so H can be extended to X. In fact Sn \B1/10(y) is bilipschitz equivalent to the standard unit
n-ball Bn and we identify them for convenience.

Lemma 1.8. Suppose that X is a compact (piecewise smooth) Riemannian manifold with boundary.
Suppose that g : ∂X → ∂Bn is given, and we want to extend g to G : X → Bn. Suppose that

ψ : N1/L(∂X)→ ∂X

is a retraction. Then there exists an extension G with

LipG ≤ L+ Lip g Lipψ.
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Proof. Let d(x) denote the distance to the boundary of X. Our extension G will map points x ∈ X
with d(x) ≥ 1/L to the origin in Bn. The map G is

G(x) = (1− Ld(x))+g(ψ(x)).

By the Leibniz rule and the chain rule,

|dG| ≤ L+ Lip g Lipψ.

�

In our case, g is the map H we have constructed on ∂X, and it has Lipschitz constant . L. Since
the distances between tubes Ti are & 1/L, it is not hard to construct a retraction ψ : N1/L(∂X)→
∂X with Lipschitz constant . 1, and so our final homotopy has Lipschitz constant . L as desired.

The proof of Lemma 1.7 is a little tricky. I learned about it in Arnold’s reminiscences about
Kolmogorov [A], page 94. Arnold writes that “when I mentioned it in a paper in Physics Today
dedicated to Kolmogorov (1989), I received a sudden deluge of letters from engineers who were
apparently working in miniaturization of computers, with requests for a precise reference to his
work.”

The spirit of the argument is as follows. Given two points, xi,+ and xi,−, we construct many
different curves γi,j from xi,+ to xi,−. We select γ1 from among the curves γ1,j . Next we select γ2

from among the curves γ2,j , making sure it does not pass too close to γ1. And so on. At step i, we
have to see that one of the curves γi,j stays far enough away from the previous curves γ1, ..., γi−1.
In fact, we will show that at step i, if we choose j randomly, the probability that γi,j comes too
close to one of the previous curves is less than one half.

We do our construction in two stages. For simplicity, suppose that the points xi,+ and xi,− all
lie on the bottom face of unit (n + 1)-cube. The curve γi,j has the following form. Starting at
xi,+, we first draw a segment in the xn+1 direction to a height of the form j0/100nL, where j0 is
an integer between 0 and 100nL. Next we draw a segment in the x1-direction a distance of the
form j1/100nL. Then we draw a segment in the x2 direction a distance of the form j2/100nL.
We continue in this way up to a segment in the xn−1 direction of length jn−1/100nL. We have
about (100nL)n choices for j0, ..., jn−1. Then we draw a segment in the xn direction which ends at
the xn coordinate of xi,−. Then we draw a segment in the xn−1 direction which ends at the xn−1

coordinate of our target xi,−, etc. Finally, we draw a segment in the xn+1-direction which ends at
xi,−.

We claim that we can choose j0, j1, ..., jn−1 so that γi,j has only perpendicular intersections with
the previously selected γi. This is the first stage of the construction. Since each curve is made of
segments that point in the coordinate directions, we just have to check that none of the segments
intersects a segment of a previous curve going in the same direction. Call a segment bad if it
intersects a segment from a previous curve going in the same direction.

The initial vertical segment of γi,j cannot intersect any of the vertical segments of previous γi
just because xi,+ is distinct from the other points. Consider the first segment in the x1 direction.
On this segment, the 2...n coordinates are fixed equal to those of xi,+. This segment can intersect
an x1 segment of a previous curve γi′ only if xi,+ has the same 2...n coordinates as xi′,+ or xi′,−.
This leaves at most 2L worrisome values of i′. But on this segment of γi,j , the (n+ 1) coordinate
is fixed equal to j0/100nL. This segment is bad only if it has the same xn+1 coordinate as an x1

segment from one of the 2L worrisome values of i′. But there are more than 100nL choices of j0.
So the probability that this first segment is bad is at most 1

50n .
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A similar argument holds for the the second segment. This x2 segment can intersect a previous
curve γi′ only if xi,+ has the same 3...n coordinates as xi′,+ or xi′,−. This leaves only 2L2 worrisome
values of i′. But there are more than (100nL)2 choices for (j0, j1). So the probability that the second
segment is bad is again at most 1

50n .
The same reasoning applies for the first n segments. And in fact the same reasoning applies for

the following n segments as well. For instance, consider the second (and last) segment in the x1

direction. Over the course of this segment, the 2...n coordinates are equal to those of xi,−, and
so this segment can intersect an x1-segment of a previous curve γi′ only if xi,− has the same 2...n
coordinates as xi′,+ or xi′,−. This leaves at most 2L worrisome values of i′. But there are more
than 100nL choices of j0, and so the probabilty that this segment is bad is at most 1

50n .

In summary, there are 2n segments, and each has probabily at most 1
50n of being bad. So more

than half the time, all the segments are good, and this gives us a curve γi which only intersects
previous curves perpendicularly.

In the second stage, we get rid of these perpendicular intersections by adding extra wiggles at
a small scale ∼ 1/L. Consider an intersection point of the curves γi. Since the curves intersect
perpendicularly, at most (n + 1) of them intersect at the given point. Moreover, there is a ball
around the intersection point of radius & 1/L that intersects at most n + 1 of the curves γi. We
can get rid of the intersection point by adding small extra wiggles to these curves inside the ball in
question. Repeating this process for all the intersection points finishes the construction.

This finishes our sketch of the proof of Proposition 1.6. Turning Brouwer’s initial construction
into a quantitative bound leads to an interesting new problem of embedding thick tubes, and it
ultimately leads to a sharp estimate for our quantitative problem.

Incidentally, we did not yet cover the case of maps S1 → S1. This case is easier because we can
use the universal cover. We include the argument here in a bit more generality for future reference.

Proposition 1.9. If f : Sm → S1 is null-homotopic with Lipschitz constant L, then f extends to
a null-homotopy h : Sm × [0, 1]→ S1 with Lipschitz constant ≤ L.

Proof. Since f is contractible, we can lift f to the universal cover to get a map f̃ : Sm → R.
The Lipschitz constant of f̃ is also L. Let y0 be a point in the image of f̃ . Then we define the
null-homotopy h1 : Sm × [0, 1]→ R by

h1(x, t) = ty0 + (1− t)f̃(x).

We denote π : R→ S1 the map from the universal cover of S1 to S1, and we define h : Sm → S1

by π ◦ h1. �

1.3. Maps from S3 to S2. The most interesting homotopy theory of spheres is about maps Sm to
Sn with m > n, and our quantitative problem is also most difficult and interesting in this setting.
The simplest example is maps from S3 to S2. The long exact sequence of the Hopf fibration gives
one way to compute π3(S2). Recall that the Hopf fibration is a fiber bundle h : S3 → S2 where
each fiber is a great circle. So the long exact sequence gives

π3(S1)→ π3(S3)→ π3(S2)→ π2(S1)→ ...

Since π3(S1) = π2(S1) = 0, we see that h∗ : π3(S3)→ π3(S2) is an isomorphism. By Brouwer’s
degree theory, π3(S3) is isomorphic to Z and so π3(S2) is also isomorphic to Z. We will use the
Hopf fibration to give quantitative bounds for null-homotopies, proving the following special case
of Theorem 0.3:
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Proposition 1.10. Suppose that f : S3 → S2 is a null-homotopic map with Lipschitz constant L.
Then f extends to a homotopy H : B4 → S2 with Lipschitz constant . L2.

The construction is based on the homotopy lifting property of the Hopf fibration. The homotopy
lifting property says that given a map g : K × [0, T ] → S2, and a lift of g at time 0, g+ : K → S3

with h(g+(x)) = g(x, 0), then we can extend g+ to K × [0, T ] with h(g+(x, t)) = g(x, t) for all x, t.
We can construct this lift geometrically by using parallel transport with respect to the standard
connection on the Hopf fibration. For our quantitative application, we need to know a quantitative
estimate for this lifting.

Lemma 1.11. If g : K × [0, 1] → S2 has Lipschitz constant LK in the K direction and LT ≥ 1
in the t direction, and g+ : K → S3 has Lipschitz constant LK , then g+ extends to K × [0, 1] with
Lipschitz constant . LKLT in the K-direction and Lipschitz constant . LT in the t direction.

We sketch the proof. The extension is given by parallel transport. To understand the Lipschitz
constant in the t direction, we may as well consider K to be a point. Suppose g : [0, 1] → S2 is a
map and g+ : [0, 1] → S3 is a lift given by parallel translation. Suppose that g′(t) is a vector v in
TyS

2, where y = g(t). Let y+ = g+(t). Then (g+)′(t) is the horizontal lift of v to Ty+S3, which we
label v+. It is straightforward to check that |v+| . |v|, and this gives the desired bound.

To understand the Lipschitz constant in the K direction, we may as well consider K to be an
interval [0, 1]. We need to show that the distance from g+(1.0) to g+(1, 1) is . LKLT .

To get a first intution, consider the special case that g maps [0, 1] × {0} and [0, 1] × {1} to a
single point q0 ∈ S2 and g+ maps [0, 1] × {0} to a single point p0 in h−1(q0) ⊂ S3. We know
that g maps {0} × [0, 1] to a closed curve γ0 from q0 to itself, and that g maps {1} × [0, 1] to a
closed curve γ1 from q0 to itself. We want to understand the distance between the points g+(0, 1)
and g+(1, 1). These points are in the same fiber: h−1(q0). This distance is the difference between
the parallel transport of p0 around γ0 and the parallel transport of p0 around γ1. Because of our
special assumption, this distance is also the parallel transport around the curve g(∂(K × [0, 1])).
We can express this parallel transport in terms of the curvature of the standard connection on
the Hopf fibration. We let ω denote the curvature form of the connection. Then the holonomy
of the connection around the loop g(∂K × [0, 1]) is equal to

∫
K×[0,1]

g∗ω. Because g has Lipschitz

constant LK in the K direction and LT in the t direction, |g∗ω| ≤ LKLT |ω| . LKLT . Therefore,
the distance from g+(0, 1) to g+(1, 1) is

≤
∫

[0,1]×[0,1]

|g∗ω| . LKLT .

Now let us sketch how to remove our special assumption that g+ maps [0, 1]×{0} to p0 and that
g maps [0, 1]× {1} to q0. In this case, we can bound the distance from g+(0, 1) to g+(1, 1) by the
parallel transport around g(∂(K × [0, 1])) plus a term related to g(K × {0}) and a term related to
g(K × {1}). At time 0, we have to deal with the fact that the given lift g+ : K × {0} → S3 may
not be parallel. The given map has Lipschitz constant LK , and the parallel lift of g has Lipschitz
constant . LK , and so the error introduced here is . LK . Similarly, at time 1, we have to subtract
off the parallel lift of g over K×{1}. This parallel lift has Lipschitz constant . LK , so it introduces
another error of size LK . All together the distance from g+(0, 1) to g+(1, 1) is . LKLT +LK . Since
we assumed LT & 1, this bound is acceptable. This finishes the sketch of the proof of Lemma 1.11.

We can now give the proof of Proposition 1.10.
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Proof. The plan is to lift the map f : S3 → S2 to a map f+ : S3 → S3, and then contract f+ using
the Brouwer type argument from the last section.

We think of S3 as S2 × [0, 1] with two 3-balls attached. Without loss of generality, we reduce to
the case that f : S3 → S2 maps each of these 3-balls to the basepoint of S2. So f : S2× [0, 1]→ S2

sends the boundary to the base point. We pick a base point of S3 lying above the basepoint of
S2, and we define f+(x, 0) to be this basepoint. Now we use homotopy lifting to lift f to a map
f+ : S2 × [0, 1]→ S3. By Lemma 1.11, the Lipschitz constant of f+ is . L2. Because f+ is a lift,
f+ maps S2 × {1} to the fiber above the base point, which is a great circle in S3.

We would like to lift f : S3 → S2 to f+ : S3 → S3. So far, we have defined f+ on S2 × [0, 1].
Since f+ maps S2×{0} to the base point, we can easily extend f+ to the 3-ball bounding S2×{0}.
Next we have to extend f+ to the 3-ball bounding S2 × {1}. Since f+ maps S2 × {1} to a circle,
this is the Lipshitz homotopy problem for maps from S2 to S1. By Proposition 1.9, we see that f+

extends over the 3-ball bounding S2 × {1} with the same Lipschitz constant.
To summarize, we have lifted f : S3×S2 to f+ : S3 → S3 with Lipschitz constant . L2. By the

long exact sequence of the Hopf fibration, f+ is contractible. Proposition 1.6 tells us that there is
a contraction H+ : B4 → S3 with Lipschitz constant . L2. Finally, we define H = h ◦H+. Since
the Hopf fibration h has Lipschitz constant . 1, we see that H has Lipschitz constant . L2. This
finishes our sketch of Proposition 1.10. �

It is not known whether the bound LipH . L2 given here can be improved. The Hopf fibration is
a natural way to understand the homotopy theory of maps S3 → S2, and the argument here seems
a natural way to make it quantitative. But is there any principle that taking natural constructions
in homotopy theory and rendering them quantitative gives the right quantitative bounds? Little is
known about this. One striking example is the contrast between Gromov’s tower-of-exponentials
bound for the quantitative null-homotopy problem and the linear or quadratic bounds in Theorems
0.2 and 0.3. The tower of exponentials arose from trying to generalize the argument here to other
fibrations, as we explain in the next subsection.

1.4. On other fibrations. Having seen the argument for the Hopf invariant in the last subsection,
it’s natural to apply similar ideas to other fibrations. Hopf fibrations exist only in a few special
dimensions, but there are many other fibrations in the topology literature, such as the path space
fibration or Postnikov towers, which are useful for studying homotopy groups in many situations.
However, from the quantitative point of view, more general fibrations can have much worse quanti-
tative estimates for the homotopy lifting property. This occurs already for fiber bundles where the
holonomy is given by a diffeomorphism. For instance, consider the fiber bundle over the circle with
fiber T 2 and with gluing map given by an Anosov diffeormorphism. If we think of T 2 as R2/Z2,
then the gluing map is a linear map coming from a matrix M in SL2(Z), and the key feature of
an Anosov diffeomorphism is that the entries of ML grow exponentially in L. This occurs for most
matrices M ∈ SL2(Z), for instance the matrix(

2 1
1 1

)
.

Let us denote this fiber bundle as E → S1. Now consider the following homotopy lifting problem.
We let g : S1 × [0, 1] → S1 be given by g(θ, t) = 2πLt, where the right-hand side is interpreted
modulo 2π to give an element of S1. We let g+ : S1 × {0} → E be a map that sends S1 to a
homologically non-trivial curve in the fiber T 2 in homology class a ∈ H1(T 2) = Z2. Notice that
the Lipschitz constant of g is 2πL and the Lipshitz constant of g+ : S1 ×{0} → E is . 1. If we lift
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the homotopy g to extend g+ to a map g+ : S1 × [0, 1] → E, then g+ maps S1 × {1} to a 1-cycle
in the fiber T 2 in the homology class MLa. For most choices of a, the vector MLa ∈ Z2 has size
≥ exp(cL), and so the length of the image curve must be at least exp(cL). This shows that the
Lipschitz constant of the homotopy lift g+ is at least exp(cL).

The Hopf fibration was much better behaved because the holonomy of the connection around any
loop is an isometry of the fiber, which avoids this issue. But once the holonomy of the connection
around some loop is not an isometry, then there is a real danger that the holonomy given by going
around the loop L times will have Lipschitz constant growing exponentially in L. In this situation,
when we apply homotopy lifting to a map with Lipschitz constant L, we get a map with Lipschitz
constant exponential in L.

Many arguments in homotopy theory involve a tower of fibrations. Suppose that Yj → Yj−1 →
... → Y1 → Y0 = Y is a tower of fibrations, and we begin with a map f : Sm → Y with Lipschitz
constant L. If we use the homotopy lifting approach to lift f to a map f1 : Sm → Y1, then unless
we are lucky or clever, the Lipschitz constant of f1 will be on the order of expL. Now if we lift f1

to a map f2 : Sm → Y2, then unless we are lucky or clever, the Lipschitz constant of f2 will be on
the order of exp(expL). This is the source of the tower of exponentials that Gromov discusses in
[G].

Remark. The sketch in [G] does not include many details. So far I have not been able to fill
in the details to give a proof of the bound with a tower of exponentials. Because of the much
stronger bounds proven in [CDMW] and [CMW], the tower of exponentials bound is now obsolete.
Nevertheless, I think it would be interesting to write down a full proof. The argument raises some
natural questions, which I think are still interesting even after [CDMW] and [CMW]. For instance,
for various interesting fibrations, what is the best quantitative version of the homotopy lifting
property which can be proven?

1.5. The state of affairs before the recent breakthrough. We have now summarized the work
on this Lipschitz homotopy problem that was done before the recent breakthrough by Chambers,
Dotterrer, Ferry, Manin, and Weinberger. I was aware of this work and thought the problem was
natural and interesting, but it seemed very difficult to me.

In the methods described so far, we begin with a proof from topology describing πm(Sn) for
some m,n, which gives a criterion for a map Sm → Sn to be null-homotopic. Implicitly, many
of these proofs actually construct a null-homotopy of any map which meets the criterion. To get
a quantitatve null-homotopy, we start by making the construction from the topology literature
explicit. If the construction involves some choices, we try to make those choices in a quantitatively
efficient way. Finally, we measure the Lipschitz constant of the resulting map. There are many
arguments in the literature to compute homotopy groups of different spaces, and for most of these
arguments it is unknown what kind of quantitative bounds they can deliver. It would be interesting
to carry out this approach for some torsion homotopy groups, like π4(S3) or π6(S3). Carrying out
such an argument for maps S6 → S3 sounded interesting and difficult to me. If m and n are bigger,
the situation seemed even more complicated. For, say, m = 1000, n = 100, the group π1000(S100)
has not been computed. In this scenario, it sounded even more difficult to me to understand the
Lipschitz homotopy problem.

The recent papers [CDMW] and [CMW] deal with all m and n, including ones for which πm(Sn)
has not been computed. They avoid this issue by taking a different approach to the problem which
we describe in the next section.
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2. The method of Chambers-Dotterrer-Manin-Weinberger

The proof of Theorem 0.2 uses two main tools, one from topology and one from geometry. The
first tool is the classification of the infinite homotopy groups of spheres.

Theorem 2.1. (Serre) The homotopy groups πm(Sn) are finite except for two cases:

• The case m = n, when πn(Sn) = Z is given by the degree.
• The case when n is even and m = 2n − 1, when π2n−1(Sn) = Z ⊕ F where F is a finite

group. The non-torsion part of π2n−1(Sn) is given by the Hopf invariant.

The infinite homotopy groups of spheres are rare, and the non-torsion parts of the homotopy
groups are much simpler than the torsion parts. The non-torsion part of the homotopy groups only
involves the degree and the Hopf invariant, which we have already grappled with above. In the
proof below, we will see that when we look at the problem from the right perspective, the effect of
the torsion part of the homotopy groups can be controlled essentially by compactness.

The difference between even and odd n comes from this theorem. If n is odd, then πm(Sn) is
finite except for m = n. If n is even, then there are two infinite homotopy groups of Sn. We will
work in the easier case when n is odd.

The second tool comes from geometry and it is related to the isoperimetric inequality. The
Lipschitz homotopy problem can be thought of as an inventive variation on the isoperimetric in-
equality. We are given a map f defined on the boundary of Sm with some quantitative bound, and
we want to extend f to the ball Bm+1 with a related quantitative bound. A key observation in the
proof is that this variation of the isoperimetric inequality is closely related to classical isoperimetric
inequalities. For instance, [CDMW] brings into play the following isoperimetric inequality due to
Federer and Fleming.

Theorem 2.2. (Federer-Fleming) Suppose that z is a k-cycle in Sm with 0 ≤ k < m. Then z is
the boundary of a (k + 1)-chain y obeying the volume bound

Volk+1(y) . Volk(z).

(This linear bound may look unfamiliar to some readers. Federer and Fleming also proved the

bound Volk+1(y) . Volk(z)
k+1
k . If Volk(z) is smaller than 1, then the latter bound is better, but if

Volk(z) is bigger than 1, then the linear bound is better. In the application here, the range where
Volk(z) is bigger than 1 is the important range.)

This inequality is closely related to an estimate for primitives of differential forms which is what
we will use in the proof below.

Proposition 2.3. Suppose that β is a closed (k+1)-form with support in (−1/2, 1/2)m. If k+1 =
m, then assume also that

∫
β = 0. Then there is a k-form α with support in (−1, 1)m solving the

equation dα = β and obeying the bound

‖α‖L∞ . ‖β‖L∞ .

We will work out the proof of this Proposition below, after we see how it is used in the proof of
the Theorem.

2.1. The framework of induction on skeleta. The proof is carried out using the framework
of induction on skeleta which comes from obstruction theory. We begin with a map f : Sm → Sn

with Lipschitz constant L. Using simplicial approximation (Lemma 1.5), we can assume that f is
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a simplicial map from (Sm,TriL) to (Sn,TriSn). (Recall that TriL is a triangulation of Sm into
standard simplices of side length ∼ 1

Land TriSn is the triangulation of Sn as the boundary of the
(n+ 1)-simplex.)

We also know that f is null-homotopic. So we can extend f to a map h : Bm+1 → Sn,
although we have no geometric information about this map h. We extend the triangulation TriL
to a triangulation of Bm+1. It has ∼ Lm+1 standard simplices of diameter ∼ 1/L.

The general idea of the argument is to improve the map h until it obeys a Lipschitz bound.
Roughly speaking, we want to “straighten out” the null-homotopy h. We will do this one skeleton
at a time. First we homotope h (relative to the boundary) to a map H1 so that the Lipschitz
constant of H1 on the 1-skeleton of Bm+1 is . L. Next we homotope H1 (relative to the boundary)
to a map H2 so that the Lipschitz constant of H2 on the 2-skeleton of Bm+1 is . L. We try to
proceed in this way until we reach Hm+1. The resulting map Hm+1 will be our desired homotopy:
it will be equal to f on the boundary and have Lipschitz constant . L on all of Bm+1.

Let’s make a couple observations about this strategy. First of all, the reader may raise an
objection. Suppose that m = n − 1. The map h is a map from Bn to Sn. Suppose that the map
f : Sn−1 → Sn is a constant map. Of course in this case, we can make a constant null-homotopy
H, so the theorem we want to prove is trivial. But suppose that h : Bn → Sn is a map of very high
degree. (The degree is well-defined because h maps the boundary of Bn to a point.) No matter how
we homotope h rel the boundary, the degree will still be very high, and so the Lipschitz constant
of any such homotopy will have to be high also. This is true. On the other hand, if m ≤ n − 1,
then the Lipschitz null-homotopy theorem was proven above and it is fairly easy. From now on we
will assume that we are in the interesting case m ≥ n. In this case, it turns out that no such issue
arises.

The next observation is that it is easy to construct H1, ..., Hn−1. In fact, we can construct these
maps so that Hj is simplicial on the j-skeleton of (Bm+1,TriL). First of all, we can homotope h to
a map H0 which sends vertices of (Bm+1,TriL) to vertices of (Sn,TriSn). Now we construct H1.
Pick an edge e of TriL. The map H0 sends the endpoints of e to vertices of Sn. Any two (different)
vertices of (Sn,TriSn) bound an edge. Therefore, there is a unique simplicial map e 7→ (Sn,TriSn)
which extends H0|∂e. As long as n > 1, any two maps from e to Sn are relatively homotopic. So
we can homotope H0|e to a simplicial map. We do this for every edge e in TriL. Then by the
homotopy extension theorem, we can homotope H0 to our desired map H1. The same procedure
works to define H2, ..., Hn−1. Our map Hn−1 is now simplicial on the (n−1)-skeleton of the domain
(Bm+1,TriL).

We run into a problem at the n-skeleton. Here is the issue. Let ∆ be an n-simplex in TriL.
We know that Hn−1|∂∆ is simplicial. This simplicial map extends to a unique simplicial map
S∆ : ∆ → (Sn,TriSn). However, Hn−1|∆ and S∆|∆ may not be homotopic to each other (relative
to the boundary). The possible homotopy classes of maps ∆ 7→ Sn with fixed boundary data are
prescribed by a degree according to the Brouwer degree theory. We can define this degree as follows.
Let dvolSn be an n-form on Sn with integral 1. Then for a map g : ∆ → Sn which agrees with
Hn−1 on the boundary, we define

Relative degree (g) :=

∫
∆

g∗dvolSn .

The relative degree is not an integer, but the difference between the relative degrees of any two
different maps is an integer. Also, any two maps g1 and g2 are homotopic rel the boundary if and
only if they have the same relative degree.
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Let us abbreviate the relative degree of g on ∆ by ωg(∆). If ωHn−1(∆) = ωS∆(∆) for every
∆, then we can homotope Hn−1 rel the (n − 1)-skeleton to a map Hn which is simplicial on the
n-skeleton. However, there is no reason to believe that the relative degrees obey this property. We
have no information at all about the relative degrees of Hn−1. They could be gigantic.

The size of the relative degree is the real issue. Suppose we knew that the relative degrees had
absolute value at most 1000. In this special case, let us show that we could homotope Hn−1 rel
the (n− 1)-skeleton to a map Hn with Lipschitz constant . L on the n-skeleton. It’s probably not
hard to see this by hand, but here is a rather general finiteness argument to show it. The finiteness
argument will be useful for us later on as well. Recall that Hn−1 is simplicial on the (n−1)-skeleton.
So there are only finitely many possible choices for Hn−1|∂∆. Since the relative degree has absolute
value at most 1000, there are only finitely many choices for the relative degree. So there are only
finitely many relative homotopy classes for Hn−1|∆. For each of these relative homotopy classes a,
we pick a map ga. We homotope Hn−1 to Hn so that the restriction of Hn to each n-simplex is
one of the maps ga. To finish, we just have to check that each map ga has Lipschitz constant . L.
This follows just because the number of maps ga is finite! To see it, let us for the moment equip ∆
with the unit simplex metric, gunit, and let A be the largest Lipschitz constant of any of the maps
ga : (∆, gunit) → (Sn,TriSn). Now since ∆ is really a standard simplex of side length ∼ 1/L, the
Lipschitz constant of Hn on each n-simplex is . AL. Since A is a constant depending only on n,
AL . L as desired.

The first hard step of the proof is to homotope Hn−1 to a map Hn which agrees with Hn−1 on
the (n− 1)-skeleton and so that the relative degrees of Hn are all . 1. By the argument above, we
can then arrange that Hn has Lipschitz constant . L on the n-skeleton of (Bm+1,TriL).

We first show that ωHn−1
is a cocycle. By definition, ωHn−1

assigns a real number to each
n-simplex of TriL, so ωHn−1

is a simplicial n-cochain: ωHn−1
∈ Cn(TriL,R). But if ∆n+1 is

an (n + 1)-simplex of TriL, then δωHn−1
(∆n+1) =

∫
∂∆n+1 H

∗
n−1dvolSn , which vanishes by Stokes

theorem. (In other words, this integral is the degree of Hn−1 : ∂∆n+1 → Sn, which vanishes because
Hn−1 extends to ∆n+1.)

Now we start to discuss how to modify Hn−1. Our modified map Hn will agree with Hn−1 on
the (n − 1)-skeleton. Moreover, the whole homotopy from Hn−1 to Hn will be constant on the
(n − 2)-skeleton. Let H̄ : Bm+1 × [n − 1, n] → Sn denote the homotopy from Hn−1 to Hn that
we want to build. If we restrict H̄ to ∆n−1 × [n − 1, n], then it has a relative degree, given by∫

∆n−1×[n−1,n]
H̄∗dvolSn . This relative degree is always an integer, because one option for H̄ is the

trivial homotopy. Since the homotopy H̄ is constant along the boundary of Bm+1, the relative
degree vanishes for each simplex ∆n−1 in the boundary of Bm+1. Any choice of integer degrees
which vanishes on the boundary is possible. These relative degrees can be encapsulated as an
integral (n−1)-cochain α ∈ Cn−1(TriL,Z), vanishing on the boundary of Bm+1. Now α determines
the relative degrees of the map Hn according to the formula

ωHn
= ωHn−1

− δα.

This key formula again follows just by Stokes theorem. We apply Stokes theorem to H̄∗dvolSn

on ∆n × [n− 1, n]. Since H̄∗dvolSn is closed, we get

0 =

∫
∂(∆n×[n−1,n])

H̄∗dvolSn .
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Now ∂(∆n× [n− 1, n]) has three parts: the top ∆n×{n}, the bottom ∆n×{n− 1}, and the sides,
∂∆n× [n−1, n]. The top contributes ωHn(∆n), the bottom contributes −ωHn−1(∆n), and the sides
contribute

∑
∆n−1⊂∂∆n α(∆n−1) = δα(∆n).

The construction of Hn now reduces to an estimate about cochains, which we state as a lemma.
Recall that for a simplicial k-cochain β, ‖β‖L∞ is defined to be the supremum of |β(∆k)| over all
k-simplices ∆k in the simplicial complex.

Lemma 2.4. Suppose ω is a real cocycle in Cn(TriL,R), and ‖ω‖L∞(∂Bm+1) ≤ 1, then there is an

integral (n− 1)-cochain α which vanishes on ∂Bm+1 so that

‖ω − δα‖L∞ . 1.

The restriction that α is integral is not that important here. Suppose that α′ is a real (n − 1)-
cochain that vanishes on ∂Bm+1. We can always round it off to get an integral (n−1)-cochain that
vanishes on ∂Bm+1 so that ‖α − α′‖L∞ ≤ 1. Since each n-simplex of TriL borders . 1 (n − 1)-
simplices of TriL, we also get ‖δα − δα′‖L∞ . 1. So it suffices to prove the lemma with a real
cochain α′. As α′ varies over all the real cochains that vanish on the boundary, ω − δα′ varies
over all the real cocycles in Cn(TriL,R) that agree with ω on the boundary. Therefore, Lemma 2.4
reduces to the following extension lemma for cocycles:

Lemma 2.5. Suppose ω∂ is a real n-cocycle on (Sm,TriL) which can be extended to an n-cocycle
on Bm+1. Then ω∂ extends to a real n-cocycle ωext on (Bm+1,TriL) obeying the bound

‖ωext‖L∞ . ‖ω∂‖L∞ .

We will prove this lemma in the next subsection. This lemma is the more geometric part of the
argument. The proof involves ideas in the spirit of the isoperimetric inequality.

We have now sketched the construction of Hn, except for the proof of Lemma 2.5. Before going
on to higher skeleta, let us quickly review the properties of the map Hn that we have constructed.

(1) Hn is homotopic rel the boundary to h. Therefore, Hn|∂Bm+1 = f .
(2) The restriction of Hn to any n-simplex of TriL comes from a finite list of maps ga : ∆n → Sn,

independent of L. In particular, the restriction of Hn to the n-skeleton has Lipschitz
constant . L.

We will homotope Hn to maps Hn+1, Hn+2, ..., Hm+1 so that Hj enjoys these properties on the
j-skeleton of TriL. In other words, we will inductively construct Hj so that

(1) Hj is homotopic rel the boundary to h. Therefore, Hj |∂Bm+1 = f .
(2) The restriction of Hj to any j-simplex of TriL comes from a finite list of maps ga : ∆j → Sn,

independent of L. In particular, the restriction ofHj to the j-skeleton has Lipschitz constant
. L.

This setup comes from the paper [FW] of Ferry and Weinberger, who gave the following pithy
argument. At this point we use Serre’s theorem that πj(S

n) is finite for all j > n. (Recall that we
are proving Theorem 0.2 in which n is odd.)

We know that Hn restricted to an n-simplex comes from a finite list of possible maps. If ∆n+1 is
an (n+ 1)-simplex of TriL, then Hn|∂∆n+1 comes from a finite list of possible maps. Now πn+1(Sn)
is also finite. So for each map ga : ∂∆n+1 → Sn, there are only finitely many relative homotopy
classes of maps ∆n+1 → Sn with the given boundary data. For each ga, and each homotopy class
γb, choose a representative map ga,b. Now we can homotope Hn relative to the boundary and the
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n-skeleton to a map Hn+1 so that the restriction of Hn+1 to any (n+ 1) simplex is one of the maps
ga,b. This defines Hn+1 with the two desired properties.

By exactly the same argument, we can homotope Hj to Hj+1. Finally, we get a map Hm+1

obeying the desired properties. In particular, Hm+1 is a null-homotopy of f with Lipschitz constant
. L. This finsihes our sketch of the proof of Theorem 0.2.

2.2. Estimates for extensions and primitives. In this section, we prove estimates for primitives
and extensions, building up to the extension lemma for cocycles, Lemma 2.5. We will begin by
proving estimates about differential forms, and then transfer them to estimates about cocycles. It
would actually be possible to work with cocycles throughout, but I think the arguments we give
will look more familiar in the context of differential forms. We will prove quantitative versions of
some familiar qualitative facts about differential forms.

We start with the following classical qualitative theorem.

Theorem 2.6. Suppose that β is a closed n-form with compact support in (−1, 1)m If n = m
assume also that

∫
β = 0. Then there is an (n− 1)-form α with compact support in (−1, 1)m which

obeys dα = β.

We are interested in adding to this theorem a quantitative estimate for α. In order to do this,
we have to adjust a little our discussion of the support.

Proposition 2.7. Suppose that 0 < s1 < s2. Suppose that β is a closed n-form with compact
support in (−s1, s1)m. If n = m assume also that

∫
β = 0. Then there is an (n − 1)-form α with

compact support in (−s2, s2)m which obeys dα = β and

‖α‖L∞ ≤ C(m,n, s1, s2)‖β‖L∞ .

We will approach this problem by studying one of the classical constructions that proves Theorem
2.6. The form constructed actually obeys the bound in Proposition 2.7.

It’s worth mentioning that there are several approaches to the problem. Problems about primi-
tives of differential forms (or cochains) are dual to problems about the boundaries of chains. This
angle is explained and used in [CDMW], and it reduces Proposition 2.7 to an isoperimetric in-
equality for relative cycles, which was proven by Federer-Fleming. For context we state the relative
isoperimetric inequality.

Theorem 2.8. Suppose that z is a relative (n−1)-cycle in [0, 1]m, for some n ≤ m. Then z bounds
an n-chain y obeying the volume bound

Voln y . Voln−1 z.

We mention this just to point out that Proposition 2.7 belongs to the general family of isoperimetric
inequalities. But we give a different proof, following Lemma 7.13 in Gromov’s book [G2].

Proof. In this proof, we write A . B for A ≤ C(m,n, s1, s2)B.
We prove Proposition 2.7 by induction on the dimension. To frame the induction, it’s convenient

to use coordinates x1, ..., xm−1, t. Now we can write our closed n-form β in the form

β = dt ∧ β1(t) + β2(t),

where β1(t) ∈ Ωn−1(Rm−1) and β2(t) ∈ Ωn(Rm−1). The condition that β is closed reads
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0 = dRmβ = −dt ∧ dRm−1β1(t) + dt ∧ ∂tβ2(t) + dβ2(t).

(Here we use dRm denote the exterior derivative on Rm and dRm−1 to denote the exterior derivative
in the variables x1, ..., xm−1 only.) So saying that β is closed is equivalent to two conditions: for
each t,

(1) β2(t) is a closed form on Rm−1.
(2) ∂tβ2(t) = dRm−1β1(t).

Our first attempt to build a good primitive is the form α1 defined by

α1(t) :=

∫ t

−∞
β1(s)ds.

The form α1 is indeed a primitive of β:

dRmα1 = dRm−1α1 + dt ∧ ∂tα1 =

∫ t

−∞
dRm−1β1(s)ds+ dt ∧ β1(t) =

=

∫ t

−∞
∂sβ2(s)ds+ dt ∧ β1(t) = β2(t) + dt ∧ β1(t) = β.

Also, ‖α1‖∞ obeys good bounds. If β is supported in [−s1, s1]m, then

‖α1‖∞ ≤ 2s1‖β‖∞.
However, the support of α1 is usually not finite. We know that for each t, β1(t) is supported

in [−s1, s1]m−1, and we also know that β1(t) = 0 unless −s1 ≤ t ≤ s1. This tells us that α1 is
supported in [−s1, s1]m−1×[−s1,∞]. There are some special cases where α1 is actually supported in
[−s1, s1]m, but in general α1 is not compactly supported and we need to fix it. The key observation
is that the problem of repairing α1 is closely related to the original problem in lower dimensions,
which lets us use induction. Notice that α1(t) is unchanging for all t in the range [s1,∞]. For all
such t,

α1(t) = γ =

∫ ∞
−∞

β1(s)ds.

Now γ is a closed (n − 1)-form on Rm−1 which has compact support in [−s1, s1]m−1. Also, if
n = m, then

∫
γ =

∫
β = 0. So we can apply induction to γ.

The base of our induction is the case when γ is a 0-form. If n − 1 = 0, then γ is a constant
function with compact support. So if m > n, γ = 0. Also, if n = m, and n− 1 = 0, then γ is just a
function on a point, so the fact that

∫
γ = 0 tells us again that γ = 0. When γ = 0, α1 is actually

supported on [−s1, s1]m, and we are done.
When γ is not zero, we use induction to find an (n − 2)-form η with support in [−s2, s2]m−1

obeying dη = γ and ‖η‖L∞ . ‖γ‖L∞ . ‖β‖L∞ . Now we let ψ(t) be a smooth function with ψ(t) = 0
for t ≤ s1 and ψ(t) = 1 for t ≥ s2, and we define

α = α1 − d (ψ(t)η) .

The form ψ(t)η is supported in [−s2, s2]m−1 × [s1,∞). Now

d (ψ(t)η) = ψ′(t)η ∧ dt+ ψ(t)γ.
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In the range t > s2, we have ψ′(t) = 0 and ψ(t) = 1, and so d(ψ(t)η) = γ = α1(t). Therefore,
our form α is indeed supported in [−s2, s2]m. Moreover,

dα = dα1 + dd(...) = dα1 = β.

Finally, ‖α‖∞ obeys a good bound:

‖α‖∞ ≤ ‖α1‖∞ + ‖ψ′(t)‖∞‖η‖∞ + ‖γ‖∞ . ‖β‖∞.
This finishes the proof of Proposition 2.7. �

Next, we need an estimate for extending closed forms based on the following classical qualitative
theorem.

Theorem 2.9. Suppose that ω∂ is a closed n-form on Sm. If m = n, assume also that
∫
Sm ω∂ = 0.

Then ω∂ extends to a closed n-form ωext on Bm+1.

Here is a quantitative version of this extension theorem.

Lemma 2.10. Suppose ω∂ is a closed n-form on Sm which extends to a closed n-form on Bm+1.
Then ω∂ extends to a closed n-form ωext on Bm+1 obeying the bound

‖ωext‖L∞ . ‖ω∂‖L∞ .
We prove Lemma 2.10 by going through the standard proof of Theorem 2.9 and giving quanti-

tative bounds using Proposition 2.7.

Proof. We use polar coordinates (r, θ) on Bm+1. We choose 0 < r1 < r2 = 1, and we let ψ(r) be
a smooth function with ψ(r) = 0 for r < r1 and ψ(r) = 1 for r > r2. Now we consider the form
ψ(r)ω∂ in polar coordinates on Bm+1. This is a smooth n-form, and its restriction to the boundary
Sm is indeed ω∂ . It also has good L∞ bounds, but it is not closed. Indeed

d (ψ(r)ω∂) = ψ′(r)dr ∧ ω∂ .

The right-hand side is an (n+ 1)-form supported in the annulus r1 ≤ r ≤ r2. If we choose r1, r2

correctly, this form is supported in a small cube contained in Bm+1. Since it is exact it is clearly
closed. Also, if m = n, then we are know by hypothesis that

∫
Sm ω∂ = 0 and so∫

Bm+1

ψ′(r)dr ∧ ω∂ = 0.

Now we can use Proposition 2.7 to find a good primitive: an n-form α supported inside Bm+1 so
that

dα = d (ψ(r)ω∂) , and

‖α‖∞ . ‖ψ′(r)‖∞‖ω∂‖∞.
Now we define

ωext = ψ(r)ω∂ − α.
Since α has compact support inside of Bm+1, ωext restricts to ω∂ on the boundary. Our equation

for dα guarantees that ωext is closed. And finally our bound for ‖α‖∞ shows that ‖ωext‖∞ . ‖ω∂‖∞.
�
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Remark: With minor adjustments, this same proof applies if we replace the ball Bm+1 with a
simplex ∆m+1.

Finally, we prove Lemma 2.5,, the extension lemma for cocycles, using the extension lemma for
differential forms we have just proven. For convenience, we restate Lemma 2.5:

Lemma. Suppose ω∂ is a real n-cocycle on (Sm,TriL) which can be extended to an n-cocycle on
Bm+1. Then ω∂ extends to a real n-cocycle ωext on (Bm+1,TriL) obeying the bound

‖ωext‖L∞ . ‖ω∂‖L∞ .

Proof. (proof sketch) Suppose that ω∂ is a real n-cocycle on (Sm,TriL), and if n = m, assume in
addition that ω∂(Sm) = 0. We want to construct a closed n-form ω̄∂ so that for any n-face ∆n,∫

∆n ω̄∂ = ω∂(∆n), and so that

‖ω̄∂‖L∞ ∼ Ln‖ω∂‖L∞ .
We construct ω̄∂ by induction on skeleta. First we construct ω̄∂ on the n-skeleton, so that its
support avoids the (n− 1)-skeleton. Then using Lemma 2.10, we extend it to the (n+ 1)-skeleton,
then to the (n+ 2)-skeleton, etc. (Technically speaking, to do this extension, we need a version of
Lemma 2.10 for a simplex instead of the ball.) Once we have ω̄∂ in hand, we apply Lemma 2.10 to
define a closed n-form ω̄ext on Bm+1 obeying

‖ω̄ext‖L∞ . ‖ω̄∂‖L∞ .
Finally we define

ωext(∆
n) =

∫
∆n

ω̄ext.

By Stokes theorem ωext is a cocycle. Also, we have the bound

|ωext(∆
n)| ≤ |∆n|‖ω̄ext‖L∞ . L−nLn‖ω∂‖L∞ .

�

2.3. Final discussion. Simplicial approximation and the framework of induction on skeleta al-
lowed us to break the original problem into many smaller problems. The high-dimensional part –
the part involving complicated homotopy groups, which seemed the most intimidating at the outset
– is tamed by the Serre finiteness theorem and by this approach.

In hindsight, the hardest part of the proof of Theorem 0.2 is the step where we homotope Hn−1

in order to control the relative degrees. This step only involves degrees - not more complicated
homotopy invariants - but it involves many degrees because the relative degree is defined on each
n-simplex of our fine triangulation of Bm+1. A key observation is that this subproblem relates to
more classical estimates in metric geometry - like bounding the primitive of a differential form or
like the Federer-Fleming isoperimetric inequality.

3. Open problems

We mention here some open problems in the general spirit of the theorems we have described
here.

The main theorem implies that the space of contractible maps Sm → Sn with Lipschitz constant
at most L is roughly connected – in the sense that any two such maps can be connected by a family
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of maps with Lipschitz constant . L (whether n is odd or even!). One can ask similar questions
about higher homotopy groups of the space of maps. Let MapsL(X,Y ) denote the space of maps
X → Y with Lipschitz constant at most L, and Maps(X,Y ) the space of continuous maps X → Y .
Suppose that γ : S1 → MapsL(Sm, Sn), and that γ is contractible in Maps(Sm, Sn). How large do
we need to choose L′ to guarantee that γ is contractible in MapsL′(S

m, Sn)?
What would happen if we take other shapes besides unit spheres? For instance suppose that

Em is an m-dimensional ellipse and Fn is an n-dimensional ellipse. Recall that the n-dimensional
ellipse with principal axes R0, ...Rn is the set defined by

m∑
j=0

(xj/Rj)
2 = 1.

The ellipses are a simple but non-compact family of Riemannian metrics on Sn. Now suppose that
f : E → F is contractible with Lipschitz constant L. Can we homotope f to a constant map
through maps of Lipschitz constant at most L′ = L′(m,n,L), independent of the dimensions of E
and F? Can we even take L′ = C(m,n)L or C(m,n)L2? What happens for other more complicated
metrics?

We are concerned here with estimating the best Lipschitz constant of a map in a given homotopy
class and with given boundary conditions. It would be interesting to understand more about the
algorithmic aspects of this problem. For simplicity, let us forget for the moment about the boundary
conditions. Suppose that Tri1 is a triangulation of Sm into ≤ N simplices and Tri2 is a triangulation
of Sn into ≤ N simplices. Assign a metric to each sphere so that each simplex is the unit equilateral
simplex. Fix a homotopy class a ∈ πm(Sn). It would be interesting to estimate the minimum
Lipschitz constant of any map f : (Sm,Tri1) → (Sn,Tri2) in the homotopy class a. This already
looks quite hard for m = n = 2, when a is the class of degree 1 maps! It would be interesting to
know how accurate an estimate is possible with a polynomial-time algorithm. The paper [CKMVW]
discusses the algorithmic difficulty of various problems in homotopy theory, such as determining
the homotopy class of a given map f : Sm → Sn.

One key point in the proof from [CDMW] is that we can deal with the torsion parts of the
homotopy groups of spheres just by knowing that they are finite. It would be interesting to find
questions that force us to engage more with their geometry. For instance, in order to estimate the
constants C(m,n) in the main theorems – Theorem 0.2 and Theorem 0.3 – it would be necessary
to know something more about the torsion part of the homotopy groups. Some of the following
questions may also push us to look harder at the torsion.

The Lipschitz constant is not the only measure of the geometric complexity of a map. Another
option is the Lp norm of the derivative,

‖df‖Lp =

(∫
Sm

|df(x)|pdvol(x)

)1/p

.

If f : Sm → Sn is a contractible map with ‖df‖Lp ≤ 100, can we extend f to a map H : Bm+1 → Sn

with ‖dH‖Lp ≤ L′(m,n, p)? If p = +∞, then ‖df‖L∞ is just the Lipschitz constant of f , and some
of the techniques we have discussed may apply for other p as well. Note, however, that if p < n,
then the space of maps with ‖df‖Lp ≤ 100 is not precompact in the C0 topology. In this situation,
it does not seem possible to do simplicial approximation, or at least it is not clear to me how
one could do it. Simplicial approximation played a basic role in the work from [CDMW] that we
discussed, and problems may become very different without it. If the answer to our last question
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is yes, we can go further and ask what is the smallest L′ = L′(m,n, p, L) so that any contractible
map f : Sm → Sn with ‖df‖Lp = L extends to a map H : Bm+1 → Sn with ‖dH‖Lp ≤ L′? We can
also ask about ‖dH‖Lq for some q 6= p, and some other q may turn out to be more interesting than
q = p. White [W] studied the connection between ‖df‖Lp and the homotopy class of f , which is a
related question.

Besides the Lipschitz constant of f and ‖df‖Lp , a third option is the k-dilation studied in [Gu].
We say that the k-dilation of a map f is at most L if, for every k-dimensional submanifold Σk in
the domain,

Volk(f(Σ)) ≤ LVolk(Σ).

If f : Sm → Sn is a contractible map with k-dilation at most 1, can we extend f to a map
H : Bm+1 → Sn with a bound on the k-dilation of H? Or maybe the l-dilation of H for some
l 6= k? Like with the Sobolev norms, the space of maps with k-dilation at most 1 is not precompact
in C0 for any k ≥ 2 and so it looks hard to use simplicial approximation.

To conclude, we mention some open problems about isotopies of “thick ropes”. Alexander
Nabutovsky proved some striking theorems about a notion of thick ropes in [N]. He considers
smooth submanifolds Mk ⊂ Rn with normal injectivity radius at least 1. Suppose that M is
isotopic to the standard Sk ⊂ Rn and suppose that M has volume V . Is it possible to build an
isotopy Mt, starting at M and ending at the standard sphere, so that Mt has normal injectivity
radius at least 1 for all t and volume at most C(k, n)V ? For n ≥ 6 and k = n − 1, [N] proves
that the answer is no. In fact, he proves something much stronger. In some examples, there is no

such isotopy with volume at most C(k, n)ee
V

. Indeed for any computable function F (V ), for V
sufficiently large, there are examples where no such isotopy exists with Vol(Mt) ≤ F (V ). The proof
is based on logic – on the inability to recognize the n-sphere algorithmically.

Similar questions for curves embedded in R3 have been around for some time, but little is known
about them. The paper [CH] by Coward and Hass gives good background about the question and
also makes an important contribution. Is it possible to find an unknotted closed curve γ ⊂ R3

with normal injectivity radius 1 so that every isotopy from γ to the standard circle maintaining
normal injectivity radius 1 goes through a curve of length strictly longer than γ? There is numerical
evidence that the answer is yes, but no rigorous theorem. The paper [CH] rigorously proves a related
theorem for links. They construct a two-component link λ ⊂ R3 with injectivity radius 1 in which
the two components are topologically unlinked, and they prove that any isotopy of λ to a final
position that separates the two links while maintaining normal injectivity radius 1 must increase
the length of one of the two components. The following question is open. Given an unknotted closed
curve γ ⊂ R3 with normal injectivity radius 1 and length L, can it be isotoped to the standard
position through curves of normal injectivity radius at least one and length at most 100L? At some
point, I played around with a long piece of rope trying to find examples, and in all the examples I
was able to produce, it was easy to find the desired isotopy.

Here is another variation on the theme of thick ropes in higher dimensions, where the method of
[N] does not apply, and the answers may turn out very differently. Let Sk(R) denote the k-sphere
of radius R, and consider a 2-bilipschitz embedding I from Sk(R)×Bn−k(1) into Rn. Suppose that
I is isotopic to a standard (unknotted) embedding I0 taking {0} times Sk(R) to a standard sphere
of radius R in Rk+1 ⊂ Rn. Is it possible to isotope I0 to I via C-bilipschitz embeddings for some
constant C = C(k, n)? If not, can we do it via βk,n(R)-bilipschitz embeddings, and what is the
best dependence on R?
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One can also try to bound the behavior of the isotopy in time. We can think of the isotopy as a
map

I : Sk(R)×Bn−k(1)× [0, T ]→ Rn × [0, T ],

where the last component of I is just the time coordinate of the domain. Then we can ask to
construct an isotopy I so that I is β-bilipschitz and also T is not too big. Is it possible to find such
an isotopy with T = R and β = C(k, n)?
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